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ABSTRACT: Compound identification is widely recognized as
a major bottleneck for modern metabolomic approaches and
high-throughput nontargeted characterization of complex
matrices. To tackle this challenge, an automated platform
entitled computer-assisted structure identification (CASI) was
designed and developed in order to accelerate and standardize
the identification of compound structures. In the first step of
the process, CASI automatically searches mass spectral libraries
for matches using a NIST MS Search algorithm, which proposes
structural candidates for experimental spectra from two-dimensional gas chromatography with time-of-flight mass spectrometry
(GC × GC-TOF-MS) measurements, each with an associated match factor. Next, quantitative structure-property relationship
(QSPR) models implemented in CASI predict three specific parameters to enhance the confidence for correct compound
identification, which were Kovats Index (KI) for the first dimension (1D) separation, relative retention time for the second
dimension separation (2DrelRT) and boiling point (BP). In order to reduce the impact of chromatographic variability on the
second dimension retention time, a concept based upon hypothetical reference points from linear regressions of a deuterated n-
alkanes reference system was introduced, providing a more stable relative retention time measurement. Predicted values for KI
and 2DrelRT were calculated and matched with experimentally derived values. Boiling points derived from 1D separations were
matched with predicted boiling points, calculated from the chemical structures of the candidates. As a last step, CASI combines
the NIST MS Search match factors (NIST MF) with up to three predicted parameter matches from the QSPR models to
generate a combined CASI Score representing the measure of confidence for the identification. Threshold values were applied to
the CASI Scores assigned to proposed structures, which improved the accuracy for the classification of true/false positives and
true/false negatives. Results for the identification of compounds have been validated, and it has been demonstrated that
identification using CASI is more accurate than using NIST MS Search alone. CASI is an easily accessible web-interfaced
software platform which represents an innovative, high-throughput system that allows fast and accurate identification of
constituents in complex matrices, such as those requiring 2D separation techniques.

Recent developments in analytical techniques for compre-
hensive nontargeted screening of small molecules in

complex matrices using chromatographic separation coupled
with mass spectrometry techniques, as used in the field of
metabolomics, has resulted in the generation of huge amounts of
data.1−3 Gas chromatography−mass spectrometry (GC-MS) is
one of the well-established analytical techniques used to separate
and detect individual compounds within complex mixtures, such
as biological samples or cigarette smoke. While traditional 1-
dimensional (1D) separation techniques are limited in their
capacity to separate the components within highly complex
matrices such as cigarette smoke, which is estimated to contain
several thousands of compounds,4 two-dimensional separation
techniques (often referred to as 2D-GC-MS or GC × GC-MS)5

were established to increase the resolution of the chromato-

graphic separation. Structural identification of resolved compo-
nents by simple mass spectral library queries provides insufficient
confidence to trust in the proposed structure. In order to increase
the level of confidence, manual verification, and interpretation of
the mass spectral library search has to be carried out. Finally, for
unequivocal compound identification, confirmation with refer-
ence standards is required.
Owing to the fact that this is very costly and time-consuming,

this can, in most cases, only be performed for a limited number of
compound structures.
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A strategy to enhance the level of confidence in structural
proposals from mass-spectral library searches is the use of
additional parameters (orthogonal information) derived from
the chromatographic analysis, such as the retention time or
Kovats Index (KI).6 Therefore, the inclusion of prediction model
parameters such as KI can dramatically improve the certainty for
compound identification. Several such models, predicting KI
values based upon molecular structures and properties, and
termed as quantitative structure−property relationship (QSPR)
models, have been published.7−9

In the same way, second dimension retention times from GC
× GC-TOF-MS can be used as additional information. The
correlation of analytes retention times and their boiling points
using nonpolar columns and linear ramped temperature
gradients for separation is known for a long time and can
provide additional information in confirming a structural
proposal.10−12 Consequently, a high-throughput computer-
assisted system that incorporates models for KI, second
dimension relative retention time (2DrelRT) and boiling point
has been developed, which increases confidence in the accuracy
of compounds identified by GC × GC-TOF-MS. The system is
termed “computer-assisted structure identification” (CASI), with
the objective to accelerate, standardize and ensure the
reproducibility for the identification of compound structures.

■ CONCEPT

The concept of CASI is based upon the extraction of proposed
molecular structures (hits) from mass spectral libraries, which
have the highest match with the queried experimental spectra,
and subsequent refinement of the proposed hits by matching
experimental chromatographic parameters with predicted
parameters derived from their chemical structures (Figure 1).

First, mass spectra are submitted to a search for structural
candidates and their associated match factors in mass spectra
databases using NIST MS Search version 2.0g13 (see mass
spectra databases used for the validation of CASI in Supporting
Information).
For the next step, specific QSPR models were developed using

different molecular descriptors to predict essential parameters for
enhancing the confidence in compound identification: KI values
for the first dimension separation and 2DrelRT values for the
second dimension separation. In addition, predicted boiling
points are calculated by ACD/PhysChem Batch software.14 The
predicted values for each hit are then directly compared with
experimentally determined values, with the exception of boiling
point, which is compared with a value derived from the first
dimension retention time. Finally, CASI combines each match
result fromNISTMS Search with the corresponding matches for
the aforementioned predicted parameters to create a new match
score, referred to as the CASI score. False positive (incorrect
hits) identifications are minimized by ensuring that absolute
score values exceed a specific threshold.
In the second step, we were questioning if by adding accurate

and high-resolution mass information would further improve
confidence in the proposed structure (see Confirmation in
Figure 1).

■ MATERIALS AND METHODS

Instrumentation and Analytical Methods. Data Gen-
eration. The experiments were performed using a LECO
Pegasus IV15 GC × GC-TOF-MS system and a Bruker
micrOTOF-Q II16 orthogonal accelerated TOF mass spectrom-
eter coupled to GC using an APCI source. Cigarette smoke,
collected on glass-fiber filter pads, was extracted with dichloro-
methane/acetone (80:20) and fortified with a mixture of several

Figure 1.CASI concept. The general CASI concept is based upon the generation of proposals frommass spectra library searches followed by subsequent
refinement using prediction models for separation and boiling point. Lower part represents the proof of concept for confirmation of the structural
proposals using accurate mass gas chromatography atmospheric pressure chemical ionization TOF-MS (GC-APCI-TOF-MS).
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deuterated internal standards and retention time marker
compounds. The cigarette smoke extracts were analyzed (i)
using dichloromethane/water partitioning and injection of the
dichloromethane extract and (ii) as crude extract derivatized
using N,O-bis(trimethylsilyl)trifluoroacetamide (BSTFA) +
trimethylsilyl chloride (TMSCI) (99:1) reagents and subsequent
injection using cool-on-column mode.
The experiments performed using GC × GC-TOF-MS and

GC-APCI-TOF-MS are described in detail in Supporting
Information section.
Data Processing. Data processing was performed using a

nontargeted screening setup with LECO ChromaTOF software
version 3.3417 for automatic peak finding, spectral deconvolu-
tion, and peak alignment. Subsequent data evaluation, with a
focus on the most relevant differences in chemical composition
was performed.
Data Sets. The data sets used for the development of the

CASI platform were generated using a method for nontargeted
comparison of different cigarette smoke samples. In order to
cover a wide range of polarities, two independent analyses per
aerosol sample were performed to generate each data set, the first
for nonpolar compounds and the second for polar compounds
derivatized by trimethylsilylation. In total, the data sets used
comprised chromatograms and spectra for 218 structures
confirmed by reference compounds, plus data for a further 176
unknown compounds. The procedure that was applied to
categorize a chromatographic peak as unknown (not identified)
was based on a mass-spectrometry and chromatography expert
knowledge based decision process (see Supporting Information).
The structural diversity of the data sets used is demonstrated

by the range of chemical compound classes covered: aliphatic
and alicyclic hydrocarbons, aromatic hydrocarbons, aliphatic and
alicyclic alcohols, polyols, polyolesters, chlorinated polyols,
terpenes, O-heterocycles, phenols, quinones, ketones and
aldehydes, hydroxyketones, small organic acids and fatty acids,
fatty acids alkyl esters, phthalate esters, nitrocompounds,
nitrosamines, N-heterocycles, hydroxy-N-heterocycles, steroids,
aromatic amines, imides, and siloxanes (detailed description in
Supporting Information).
Generation of the Second Column Relative Retention

Time. For the calculation of 2DrelRT a novel experimental
model was developed. In the CASI approach, 2DrelRT is derived
from second dimension peaks in relation to hypothetical
reference points based upon linear regressions of deuterated n-
alkanes (Figure 2). The n-alkanes are used to generate a
hypothetical second dimension retention time reference system,
compensating for systematic shifts (such as different column
length or gas flow) but not for any shifts related to analyte-
stationary phase interaction, as these shifts are dependent upon
individual compound properties.
The second dimension relative retention time of a compound

is calculated as follows:

=2DrelRT
abs2DRT
2DRThrf (1)

where abs2DRT is the measured second dimension retention
time of the compound and 2DRThrf is the second dimension
retention time of the hypothetical reference point.
For a given compound that elutes between deuterated n-

alkane standard compound 1 and compound 2, the 2DRThrf is
calculated using the linear equation y = ax + b
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where a = (2DRTdA2 − 2DRTdA1)/(1DRTdA2 − 1DRTdA1) is
describing the slope and b is calculated by substituting x using the
known values for dA1.
The equation resolved using the known values for dA1 for b =
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where dA1 and dA2 are deuterated n-alkane 1 and 2, respectively,
and 1DRT and 2DRT are the first and second dimension
retention time of the respective molecules.

QSPR Modeling Methods for Predicting KI and
2DrelRT. The retention times for 218 unique commercially
sourced compounds analyzed using GC × GC-TOF-MS were
used to build the KI and 2DrelRT models. The compounds were
split randomly into a training set (118 compounds), a test set
(40), and a validation set (60). The training set was used to select
the descriptors for QSPR modeling and to build the models.
Performances of the predictions on training set and test set were
used to identify the best models.
The chemical structures of the 218 compounds were

standardized using Pipeline Pilot,18 the process for which being
described later in this publication. From each of these
standardized structures, 2489 two-dimensional descriptors
were computed using Dragon.19 Noninformative descriptors
(constant and near-constant variables and pair correlation with a
threshold of 0.98) were subsequently excluded, after which 370
descriptors remained. For each model a smaller number of
descriptors were then selected using genetic algorithms. Models
were built using three learning algorithms, k-nearest neighbors
(k-NN), multilinear regression (MLR) and support vector
regression (SVR) (see Supporting Information section).
The k-NN, MLR, and SVR learning algorithms were used

within the RapidAnalytics 520 software environment. Genetic
algorithms were developed in Java to select the descriptors to be
used in each model. Scoring was executed using a RapidAnalytics
protocol with a cross validation squared correlation (Q2)
function used for k-NN and MLR and root mean squared

Figure 2. Principals of the second dimension relative retention time
generation. Hypothetical reference points (full line) are derived from
the linear regression of the experimentally measured retention times of
deuterated n-alkanes in the two-dimensional separation space.
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error (RMSE) function for SVR (detailed description in
Supporting Information).
Derivation of Boiling Point from Kovats Index. Boiling

points for structural candidates are calculated from their
proposed structures using ACD/Labs PhysChem Batch
software. These calculated boiling points for structural
candidates (hits) are then matched with boiling points derived
from experimentally measured KI values.21 A correlation
betweenmeasured KI and calculated boiling point was developed
using the training set of compounds.
Algorithm for Scoring Structure Candidates. Scores are

calculated from the NIST MS Search match factor, predicted KI,
predicted 2DrelRT and the calculated boiling point, using
hyperbolic equations. The general principle is to factor scores for
similarity of experimental mass spectra to library mass spectra,
with scores derived from each analytical property (KI, 2DrelRT,
...). The analytical property scores (KIFIT, 2DrelRTFIT, ...) are
normalized from 0 (no similarity) to 1 (perfect match) and are
based on quadratic equations using polynomials factorization
(Figure 3). A detailed explanation can be found in the Supporting
Information.

Optimization of the CASI Score. To optimize the
contribution of each module to the final score (CASI Score), a
weighting scheme was developed. The value at which the
hyperbolic curve crossed the X axis for each module, as defined
by the steepness of the hyperbolic function, was used to weight
each module’s contribution to the final CASI Score. A grid search
procedure was established in order to define optimal values for
nKI, n2DrelRT, and nBP and all possible solutions were generated.
The solution score was the number of correct hits achieved and
the solution with the highest number of correct hits was selected
for use. The algorithm is described in Supporting Information.

Software Development and Architecture. To automate
the entire process, the CASI software platform was developed.
The software is accessible via a web interface to enter mass
spectra as a multi JDX file, KI values, 2DrelRT values, and any
additional information required to describe the experiment. Each
submitted mass spectrum is queried versus commercially
available mass spectra databases using NIST MS Search (see
Supporting Information). Chemical names for the hits are then
converted into chemical structures using an Accelrys Pipeline
Pilot workflow (accelrys.com), which combines searches in the
PMI corporate chemical registry database (UCSD),22 Pub-
chem23 and ChemSpider24 with the functionality of ACD/
Laboratories Name-to-Structure Batch software version 12.25

Models are applied to predict the Kovats index, 2DrelRT, and
boiling point for each hit, which are then compared with
experimentally measured values to create match scores. These
calculated match scores are combined with the match factor from
NIST MS Search, as described previously, to give a CASI Score
(Figure 1). Finally the hits for each query are listed in order of
decreasing CASI Score, which the user can then view via a
dedicated web interface (see Supporting Information).
The CASI platform was developed using several external

software components, the architecture for which is presented in
Supporting Information.

■ RESULTS AND DISCUSSION
Second Column Relative Retention Time Performance.

The conventional procedure to utilize chromatographic
information from the second dimension of GC × GC-TOF-
MS analysis is based upon absolute retention times. The
advantage of having a relative model for the second dimension
retention time (currently no known method available) is the
ability to compensate for any chromatographic fluctuations.
The performance of this model for 2DrelRT was tested by

evaluating the reproducibility of absolute retention times versus
relative retention times for merged data sets from three
independent nontargeted screening studies comparing different
smoke extract samples. The focus of this evaluation was made
using data from a reference cigarette, which was used as a quality
standard and was analyzed in triplicate within each study
(detailed description in Supporting Information Section). The
evaluation of the nine independent chromatograms was
performed in a nontargeted way, with peaks having a signal-to-
noise ratio exceeding 250 being selected. The total number of
evaluated compounds, regardless if putatively identified or not
and without outlier correction, was 1219. The results show that
the relative standard deviation for the 90th percentile of all
evaluated compounds for the entire data set was reduced from
4.3% for the second dimension absolute retention time (2
DabsRT) data down to 2.5% when using the 2DrelRT system
(Figure 4).

Results for the Prediction of KI and 2DrelRT using
QSPR models. The predictive models for Kovats Indices were
generated using genetic algorithms in combination with either
MLR or k-NN algorithms. The best model for MLR and k-NN
algorithms were selected for comparison and the best of them
was selected to be included for the CASI Score function
calculation. The best results were obtained using MLR with
seven descriptors, where the squared correlation (r2) was 0.981
and the relative error was 5.18% for the validation set (see results
and the correlation for KI prediction in Supporting Information
Section). The main contributing descriptor was the number of
C−C bonds (F01[C−C]). Other descriptors related to size and

Figure 3.Contribution equation of a scoring module: example for KIFIT.
The curve shows the dependency of the probability for the correct
proposal (y axis) based upon the deviation of predicted KI (x axis). The
greater the deviation between experimental and predicted KI, the lower
the probability for the proposal, depending upon the curve fitting
function used. The greater the steepness of the curve, the greater the
effect of any deviation between experimental and predicted values on the
probability for the proposal, and the higher the impact on the overall
CASI score.
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lipophilicity (H-047 and nCt) were part of the model and
polarity descriptors were also involved (nN, EEig04d, TPSA-
(NO) and B01[C−O]).
The best results for the 2DrelRT model were obtained using

support vector machine with 12 descriptors, where the squared
correlation (r2) was 0.855 and the relative error was 6.76%. The
nature of the descriptors used for the 2DrelRT model was more
complex than for KI prediction (see list of descriptors in
Supporting Information). A descriptor related to the number of
benzene rings (nBnz) was present which was consistent with the
presence of 50% of phenyl-groups in the used DB-17 column.
Polar descriptors were also included (B03[C−O], F02[C−O],
andMe). Although the predictive power of this model is high, it is
not as accurate as the KI model due to the fact that the second
dimension separation is affected by chromatographic variances in
both dimensions as retention shifts in the first dimension are also
causing subsequent retention shifts in the second dimension
separation. For the list of descriptors and their definitions, results
and correlation for 2DrelRT prediction see Supporting
Information.
Prediction of Boiling Points from Kovats Indices. The

linear equation resulting from the correlation of calculated
boiling points with experimental Kovats Indices for the training
set compounds was:

= × +BP 0.1549 KI 31.725 (3)

The r2 value for this correlation was 0.953. For the test set
compounds, the squared correlation between the boiling points
obtained with this equation and the computed boiling points is
0.867 (0.867 at zero intercept). For the compounds of the
validation set the squared correlation is 0.942 (0.940 at zero
intercept).
Global Validation: CASI versus NIST. Ability to Correctly

Rank True Hits. Optimization of the CASI score function was
performed by varying the weighting for each of the prediction
models (KI, 2DrelRT, and boiling point), and subsequently
assessing the number of correct hits achieved for compounds
contained within the training and test set. The standard error of
prediction values for KI, 2DrelRT, and boiling point were also
integral to the calculation of the CASI score, and were calculated
using data from the same sets of compounds (SEPKI = 82.57,
SEP2DrelRT = 0.0771, and SEPBP = 23.05). Each weighting
combination applied to the CASI score equation resulted in a

solution, and with weighting values represented by integers (n)
between 1 and 50 for each prediction model, this represented a
total of 125 000 solutions applied to each spectrum proposed by
NIST MS Search. The test set compounds were used to perform
a first pass evaluation of the entire range of solutions, and 93 of
the 125 000 solutions enabled a maximum of 35 hits to be sorted
correctly for a total of 40 queries (88%). These 93 solutions were
then further filtered by applying them to the training set
compounds, where a maximum of 94 compounds out of 118
(80%) were correctly identified using 11 of these solutions. The
weighting values for KI and 2DrelRT were constant for these 11
solutions (nKI = 11; n2DrelRT = 10) and the weighting values for
boiling point (nBP) were greater than or equal to 36. The solution
with the lowest value for nBP (= 36) was chosen to maintain the
highest selectivity for this parameter. To ensure that this
selection had no influence on the number of correctly identified
results, we calculated the results for each solution for the
validation set. Each of the solutions gave the same results, with 52
compounds being correctly identified from the 60 present within
the validation set (87%), which indicates the lower impact of the
BP module compared to KI and 2DrelRT modules.
Noteworthy, 2 hits were removed from the evaluation of

ranking of correct hits for the validation set (complete set of hits
can be seen in Supporting Information section). The first was a
duplicate entry for stigmasterol using a different name. The
second was a stereoisomer of campesterol which had the same
score as the correct isomer. These examples illustrate the
challenges and limitations of the selected techniques used with
generic chromatographic systems.
Using the NIST MS Search match factor (NIST MF) alone,

the number of correct hits for compounds within the validation
set was 45 (75%), whereas the number achieved using the CASI
Score was 52 (87%) (Table 1 and Figure 18 in Supporting
Information).
The diversity of compounds contained within the training set

and the validation set was evaluated by comparing calculated
ECFP6 fingerprints (extended connectivity fingerprints with a
diameter of 6)26 using Tanimoto indices (for visualization see
Supporting Information). One compound from the validation
set, namely isobornyl acetate, was ranked in 27th position by
CASI Score compared to first place ranking by NIST MF, clearly
indicating an outlier compound for the CASI ranking procedure
(Table 1). The predicted retention times and boiling points are
the reason for the poor ranking (the variances were 19.3% for KI,
24.3% for 2DrelRT, and 8% for BP). An analysis of similarity
between each compound of the validation set with each
compound of the training set clearly showed that isobornyl
acetate had the lowest similarity to any compound in the training
set, most probably being outside the applicability domain of the
models.
In addition, the individual impact of each of the modules KI,

2DrelRT, and boiling point upon the outcome of the CASI Score
was evaluated, the parameters for each module having been
optimized with the NIST MF in isolation. The results are
presented in Table 2.
All three components KI, 2DrelRT, and BP improve the

identification of correct hits in comparison to NIST MF alone.
Best results were obtained using all three modules KI, 2DrelRT,
and BP on all three data sets (training, test, and validation sets).
The contribution of modules in decreasing order are KI,
2DrelRT and BP. The BP was kept as a component of the
score in addition of KI because of the applicability domain of the
BP model. BP is calculated with ACD/Labs PhysChem software

Figure 4. Number of identified compounds per relative standard
deviation. Result on reproducibility (N = 9) using the relative retention
time model compared to the absolute retention time for the second
dimension of GC × GC-TOF-MS.
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Table 1. List of Correct Structures Retrieved for Mass Spectra of the Validation Seta

no. correct hit name
NIST
MF

NIST
rank

CASI
score

CASI
rank Kl exp

Kl
pred

2DrelRT
exp

2DrelRT
pred

BP from
KI

BP
pred

1 hexadecanoic acid, methyl ester 896 1 881 1 1936 1959 1.13 1.23 332 332
2 1-pentene, 2,3-dimethyl- 915 1 906 1 579 560 0.94 0.87 121 85
3 fluoranthene 871 2 869 1 2129 2136 1.84 1.87 362 375
4 2H-1-benzopyran-2-one, 7-hydroxy-6-methoxy- 923 1 858 1 1969 1759 2.13 2.05 337 413
5 acetic acid, phenyl ester 923 2 877 2 1089 1199 1.52 1.67 200 195
6 benzofuran, 2,3-dihydro- 868 1 853 2 1125 1193 1.58 1.66 206 188
7 p-benzoquinone, 2-methyl- 929 1 875 1 1038 1239 1.62 1.69 193 187
8 benzaldehyde, 4-hydroxy-3-methoxy- 632 3 620 1 1480 1446 1.81 1.91 261 283
9 d12-benz(a)pyren 542 7 431 1 2859 2660 2.32 2.01 475 495
10 N-nitrosonornicotine 821 1 797 1 1817 1864 2.1 1.98 313 369
11 1H-indole, 3-methyl- 939 1 922 1 1474 1365 1.78 1.73 260 265
12 stigmasta-5,22-dien-3-ol, 3α,22E)- 809 1 804 1 3159 3140 1.8 1.74 521 501
13 9,12-octadecadienoic acid, methyl ester, (E,E)- 883 1 856 1 2110 2216 1.2 1.3 359 373
14 d7-isoquino line 879 1 871 1 1341 1362 1.7 1.77 239 243
15 1-tetradecanol 878 12 873 1 1746 1696 1.13 1.13 302 263
16 2-dodecanone 924 1 917 1 1483 1448 1.16 1.1 261 248
17 anthracene 913 1 909 1 1867 1837 1.74 1.78 321 337
18 2-hexene, 2-methyl- 906 1 901 1 622 638 0.98 0.94 128 96
19 2-propanone, 1-chloro- 798 1 724 1 604 490 1.33 1.55 125 120
20 oleic acid 875 1 866 1 2158 2226 1.2 1.26 366 360
21 pentanoic acid, 4-oxo-, trimethylsilyl ester 613 8 582 7 1177 1139 1.34 1.17 214 202
22 2-cyclopenten-1-one, 3-methyl- 916 1 868 1 964 928 1.69 1.52 181 158
23 ergost-5-en-3α-ol 829 1 810 1 3135 3013 1.75 1.7 517 489
24 benzene, nitro- 909 1 591 6 1150 1321 1.59 2.03 210 211
25 3,6-dioxa-2,7-disilaoctane, 2,2,4,7,7-pentamethyl- 929 1 903 1 1006 926 1 0.89 188 167
26 phenol, 2,6-dimethoxy- 939 1 915 1 1427 1297 1.71 1.77 253 264
27 sorbic acid, trimethylsilyl 893 1 880 1 1235 1137 1.19 1.15 223 193
28 pyridine, 3-(3,4-dihydro-2H-pyrrol-5-yl)- 905 1 861 1 1526 1490 1.69 1.86 268 245
29 silane, (2-methoxyphenoxy)trimethyl- 919 1 917 1 1286 1246 1.31 1.32 231 215
30 3,6,9,12-tetraoxa-2,13-disilatetradecane,

2,2,13,13-tetramethyl-
895 1 852 1 1572 1374 1.12 1.13 275 271

31 naphthalene, 1-ethyl- 932 1 930 1 1489 1502 1.55 1.58 262 259
32 furan-2-carboxylic acid, 3-methyl-, trimethylsilyl

ester
878 1 872 1 1274 1217 1.35 1.38 229 197

33 nonacosane 881 8 879 2 2850 2822 1.01 1.01 473 441
34 hydroquinone (2TMS) 901 2 885 1 1471 1397 1.12 1.04 260 246
35 triacontane 902 2 900 1 2929 2915 1.02 1.01 485 450
36 silane, (2-furanylmethoxy)trimethyl- 914 1 897 1 1003 995 1.21 1.11 187 172
37 2-propanone, 1-hydroxy- 879 1 836 1 580 637 1.3 1.46 122 145
38 hexadecane, 2,6,10,14-tetramethyl- 900 2 893 1 1845 1779 0.99 1.02 318 322
39 furfural 945 1 871 1 790 879 1.6 1.8 154 162
40 1-dodecanol 893 3 888 1 1560 1498 1.14 1.12 273 258
41 octanoic acid, ethyl ester 921 1 908 1 1253 1281 1.16 1.25 226 208
42 2-cyclopenten-1-one 942 1 936 1 787 850 1.65 1.68 154 136
43 2-hydroxydecanoic acid (2TMS) 916 1 910 1 1692 1755 1.03 1.02 294 321
44 D-ribopyranose, 1,2,3,4-tetrakis-O-trimethylsilyl- 700 1 608 1 1684 1770 1.24 0.98 293 368
45 1-butanamine, N-butyl-N-nitroso- 852 1 829 1 1347 1383 1.32 1.45 240 251
46 9,12-octadecadienoic acid (Z,Z)-, trimethylsilyl

ester
999 1 988 1 2236 2319 1.09 1.12 378 402

47 pentanal 935 1 915 1 618 652 1.16 1.27 127 104
48 oleic acid, trimethylsilyl ester 834 1 832 1 2236 2278 1.09 1.09 378 401
49 hexadecanoic acid, ethyl ester 909 1 902 1 2001 2051 1.11 1.16 342 342
50 1,2-benzenedicarboxylic acid, bis(2-ethylhexyl)

ester
880 6 746 3 2550 2826 1.37 1.56 427 385

51 dodecanoic acid, ethyl ester 906 1 876 1 1661 1675 1.13 1.26 289 269
52 cholesta-3,5-diene 616 10 560 1 2875 2716 1.38 1.57 477 458
53 docosane 933 1 930 1 2224 2170 1 1.01 376 368
54 dotriacontane 889 5 878 1 3085 3100 1.08 1 510 467
55 d19-decanoic acid 908 1 903 1 1418 1411 1.22 1.17 251 270
56 benzeneacetaldehyde 937 1 913 1 1078 1219 1.59 1.56 199 198
57 isobornyl acetate 854 1 653 27 1363 1627 1.29 1.6 243 223
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which uses a model based on a training set of 8500 molecules,
thus it represents more robust model applicable for future
analysis of different samples for example.
Ability to Discriminate True Hits from Unknowns.

Ranking by itself is not sufficient to correctly identify structures
and in cases where the correct structure is not present in the
reference spectra database, any structure proposed by a mass
spectral libraries-based search (CASI included) will be incorrect.
A score threshold can assist the user in the decision making
process and the CASI process was developed to combine a score
threshold alongside the ranking procedure. In order to show the
discriminative power of this threshold, correct hits from the
validation set (60) and compounds with the highest score from a
set of unknown compounds (176) using both NIST MF and
CASI Score were compared (Figure 5). A clear separation
between correct hits and unknowns for both scores was
observed.
The comparative performance of CASI versus NIST MS

Search was evaluated using the hits ranked in the first position
with their respective score values above a certain threshold. The
thresholds were selected from the crossover points of the curves
representing correct and incorrect proposals (825 for NIST MF
and 795 for CASI Score), see Figure 5. Using these thresholds,
the ability of CASI and NISTMS Search to discriminate between
true and false hits was compared (Table 3). True/false positives/
negatives were defined as follows: True positives were correct
hits ranked first, having a score above or equal to a predefined
threshold, false positives were hits from the unknown set having a

score above the threshold. True negatives corresponded to hits
from the unknown set having a score below the threshold, and
false negatives were correct hits from the validation set with a
score below the threshold and hits from the validation set which
did not correspond to the correct structure.
Using the CASI score resulted in 46 (77%) correct hits (true

positives) being identified compared with NIST MF which
delivered 40 correct hits (67%). However, when the number of
false positives identified was also taken into consideration, the
superior predictive power of CASI over NIST MF became
apparent.

=
+

predictive precision rate
number of true positives

number of true positives number of false positives
(4)

Using this calculation for predictive precision rate, the CASI
Score had a greatly improved predictive precision rate (46/(46 +
11) = 81%) than NIST MF (40/(40 + 29) = 58%).

Table 1. continued

no. correct hit name
NIST
MF

NIST
rank

CASI
score

CASI
rank Kl exp

Kl
pred

2DrelRT
exp

2DrelRT
pred

BP from
KI

BP
pred

58 1,2,3-propanetriol, monoacetate 772 1 766 1 1125 1147 1.64 1.59 206 253
59 naphthalene, 1-methyl- 926 2 925 2 1414 1409 1.54 1.51 251 243
60 methyl triacontanoate 862 1 802 1 3206 3263 1.32 1.12 528 476

ano.: Position of the compound in the validation set. Correct Hit Name: Correct compound proposed by NIST MS Search. NIST MF: NIST match
factor. NIST Rank: Rank of the correct structure according to NIST Match Factor. CASI Score: Score calculated by CASI. CASI Rank: Rank of the
correct structure according to CASI score. KI exp.: Experimental Kovats Indices. KI pred.: Kovats Indices predicted from the structure of the correct
hit. 2DrelRT exp.: Experimental 2D relative retention time. 2DrelRT pred: 2D relative retention time predicted from the structure of the correct hit.
BP from KI: Boiling point calculated with a linear equation using experimental Kovats Index value. BP pred: Boiling point predicted from the
structure of the correct hit using ACD/Laboratories Physchem Batch.

Table 2. Number of Correct Hits Using Different
Combinations of CASI Score Modulesa

number of correct hits and % of the total (n)

training set
(n = 118)

test set
(n = 40)

validation set
(n = 60)

overall
(n = 218)

combination of
modules hits % hits % hits % %

NIST MF, KI,
2DrelRT, BP

94 79.7 35 87.5 52 86.7 83.0

NIST MF, KI,
2DrelRT

93 78.8 35 87.5 52 86.7 82.6

NIST MF, KI, BP 93 78.8 33 82.5 48 80.0 79.8
NIST MF, KI 92 78.0 33 82.5 48 80.0 79.4
NIST MF,
2DrelRT, BP

92 78.0 33 82.5 47 78.3 78.9

NIST MF, BP 92 78.0 32 80.0 47 78.3 78.4
NIST MF,
2DrelRT

90 76.3 31 77.5 45 75.0 76.1

NIST MF 87 73.7 30 75.0 45 75.0 74.3
aResults for the CASI score based on NIST MF and all three
components are presented in the first line.

Figure 5. Comparison of hit frequency by NIST MF and CASI Score.
Distribution of the NIST MF (dashed lines) and CASI Score (plain
lines) for correct hits from the validation set and for hits selected by
default (highest score) from a set of 176 unknown compounds.

Table 3. Comparative Power of CASI and NIST MF Scores to
Discriminate between Correct and Incorrect Structural
Identification

CASI score NIST MF

number of hits true false true false

positive 46 11 40 29

negative 165 14 147 20
total 89% 11% 79% 21%
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Confirmation of Structural Proposals using Accurate
Mass Measurements. The proposed structural candidates
were confirmed using accurate mass measurements from GC-
APCI-TOF-MS, and the measured masses were compared with
the theoretical monoisotopic masses of the compounds. As this
confirmation required the use of two different chromatographic
systems, it was important to be able to match their respective
retention indices. To test the feasibility of this approach, two
scenarios were evaluated: First, a test with a sample of simple
chemical composition, comprising internal standards and
retention index marker compounds, and second, a test using a
smoke sample from a reference cigarette representing a complex
matrix, see Figure 6.

In the first scenario (Figure 6a, b), the deviation of the
retention indices between both systems was found to be ≤1%
(range 0.2%−1.0%) for all 7 internal standard compounds. The
deviation between the theoretical and measured masses did not
exceed 1mDa (range 0.1−1.0 mDa) for the 7 internal standard
and 4 retention marker compounds using GC-APCI-TOF-MS.
In the second scenario (Figure 6c, d), a smoke extract sample

generated from a reference cigarette was analyzed by accurate
mass GC-APCI-TOF-MS with the focus upon 97 compounds
that were confirmed by reference compounds. Out of these 97
compounds, 80 were proposed to be potentially ionizable by the
APCI ionization technique as they contain heteroatoms.
Seventy-three (91%) of these 80 proposed ionizable compounds
were confirmed using GC-APCI-TOF-MS by means of accurate
mass and retention index. The remaining 7 compounds could not
be confirmed since they were not detected, most likely due to
insufficient ionization.
Overall it is feasible to bridge data between GC-APCI-TOF-

MS and GC × GC-EI-TOF-MS using retention indices. As the
majority of tested compounds could be confirmed (by retention
index and accurate mass matching) we expect to enhance the
confidence level given by CASI approach by removing false
positive proposals. However, a recognized limitation of this
approach is that not all compounds observed under electron

impact (EI) ionization mode will be visible using atmospheric
pressure chemical ionization (APCI). Alternatively, chemical
ionization mode could be also interesting to overcome this issue.
The impact of using accurate mass techniques upon the CASI

platform prediction performance is currently being assessed in
detail.

■ CONCLUSION

A computer-assisted structure identification platform (CASI)
was designed and developed. The CASI platform accelerates and
standardizes the identification of compound structures, assures
reproducibility and enables scientists to have higher confidence
in the correct assignment of mass spectra to the right
compounds. The CASI platform automatically identifies, on-
the-fly and with highest confidence, relevant structures from
mass spectra associated with chromatographic data using a novel
2-dimensional relative retention time model. This makes CASI a
unique automated platform, designed for high-throughput
identification of compounds from complex matrices using GC-
MS data.
CASI was tested on a set of 60 compounds and demonstrated

superior identification performance (87%) compared to the
industry standard approach using NIST MS Search (75%).
Moreover, the CASI Score was shown to have a better predictive
precision rate (81%) than the NISTMF (58%). In consequence,
the confidence in a proposed structure by the CASI platform is
enhanced compared to NIST MS Search, essentially because of
the reduced number of false positive results. On the basis of the
results presented, for 10 proposed structures 4 proposals would
be false when using NIST MS Search, while the CASI platform
could reduce this number to 2 false proposals out of 10.
Finally, a proof of concept to further increase the confidence in

the compound identification by using accurate mass measure-
ments has been performed. The next steps are to optimize the
retention index system and automatic peak confirmation
techniques. Furthermore the relation of data set size to
informational quality is planned for evaluation. The development
of a proton affinity model is also planned in order to focus any
confirmation by GC-APCI-TOF-MS on potentially ionizable
molecules only.
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Figure 6. Total ion chromatograms of two types of sample from two
systems as a confirmation of CASI performance. The confirmation
strategy entailed bridging the data obtained from GC × GC-TOF-MS
(Leco Pegasus IV, left part) to accurate mass GC-APCI-TOF-MS
(Bruker micrOTOF-Q II, right part) using a mix of internal standards
and retention index marker compounds (a, b) and a complex matrix
represented by a smoke extract generated from a reference cigarette (c,
d).
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