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ABSTRACT: Monitoring of volatile and semivolatile com-
pounds was performed using gas chromatography (GC) coupled
to high-resolution electron ionization mass spectrometry, using
both headspace and liquid injection modes. A total of 560
reference compounds, including 8 odd n-alkanes, were analyzed
and experimental linear retention indices (LRI) were
determined. These reference compounds were randomly split
into training (n = 401) and test (n = 151) sets. LRI for all 552
reference compounds were also calculated based upon computa-
tional Quantitative Structure−Property Relationship (QSPR)
models, using two independent approaches RapidMiner
(coupled to Dragon) and ACD/ChromGenius software.
Correlation coefficients for experimental versus predicted LRI
values calculated for both training and test set compounds were calculated at 0.966 and 0.949 for RapidMiner and at 0.977 and
0.976 for ACD/ChromGenius, respectively. In addition, the cross-validation correlation was calculated at 0.96 from RapidMiner
and the residual standard error value obtained from ACD/ChromGenius was 53.635. These models were then used to predict
LRI values for several thousand compounds reported present in tobacco and tobacco-related fractions, plus a range of specific
flavor compounds. It was demonstrated that using the mean of the LRI values predicted by RapidMiner and ACD/
ChromGenius, in combination with accurate mass data, could enhance the confidence level for compound identification from the
analysis of complex matrixes, particularly when the two predicted LRI values for a compound were in close agreement.
Application of this LRI modeling approach to matrixes with unknown composition has already enabled the confirmation of 23
postulated compounds, demonstrating its ability to facilitate compound identification in an analytical workflow. The goal is to
reduce the list of putative candidates to a reasonable relevant number that can be obtained and measured for confirmation.

Unambiguous chemical characterization still remains a
major hurdle for analytical chemists when dealing with

nontargeted analyses, despite significant improvements in
chromatographic separation techniques and mass spectrometric
instrumentation over the past decade. Hence, the final step for
compound identification still requires the purchase of putative
chemicals and matching of spectra and retention times under
identical analytical conditions. However, reference standards
are not always commercially available and several standards
may need to be analyzed before finding an exact match (e.g., in
case of isomeric compounds), which can represent a very costly
process. Therefore, a suitable balance between the cost for
purchasing chemical standards and the speed for certainty in
compound identification is of great importance. Gas
chromatography coupled with mass spectrometric detection
(GC/MS) is currently the most widely used technique because
of its high reproducibility of results across laboratories for both
qualitative and quantitative aspects and the availability of

extensive and reliable mass spectral libraries. Currently, the
Wiley Registry (10th edition) together with National Institute
of Standards and Technology version 14 (NIST 14) contains
over 960 000 electron ionization (EI) mass spectra representing
approximately 750 000 unique compounds.1 However, such
numbers are small in comparison with the PubChem
compound database, which contains nearly 200 million
compounds,2,3 or the ChemSpider repository, which currently
contains 37 million chemical structures.4

Obviously, there is a need to develop additional tools in
order to strengthen the confidence level for compound
identification, particularly when mass spectral information for
chemicals are not available in any existing MS libraries. To
overcome this gap, several software packages have been
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developed to predict in silico EI fragmentation using either an
MS rule-based approach such as Mass Frontier,5 high-
throughput automation of mass frontier (HAMMER),6 MS
interpreter,7 and ACD/MS Fragmenter8 or using combinatorial
proposals such as Fragment Identificator,9,10 Fragment Formula
Calculator,11,12 Molecular Structure Correlator,13 and Met-
Frag.14−17 Most of them use chemical structures as input and
generate spectra which are then compared against measured
ones before ranking the compounds proposal. However,
Schymanski et al. highlighted a need for caution when taking
the highest matching score value for compound ranking.18

Indeed, the match value versus assignment quality index
revealed some issues regarding the relative abundance of
fragment ions proposed by in silico prediction approaches and
highlighted a limited ability for the consideration of structural
rearrangements beyond those related to simple hydrogen
movements. Small changes in structure can also lead to the
proposal of a significantly different fragmentation mechanism
using an MS rule-based fragmentation approach.19 Although in
silico fragmentation software brings important added value to
compound identification, EI mass spectra of some isomeric
compounds will result in the same or very similar fragmentation
patterns, where only the intensity of some fragment ions may
differ. Even accurate mass measurements are not helpful for
distinguishing between isomeric forms in such cases. Another
example of compound identification difficulties arising in GC/
MS analysis of complex samples is the fact that the same class
of compounds, such as terpenes, have identical mass spectra.
This is a consequence of similarities either in the molecules
themselves or in the fragmentation patterns and rearrange-
ments occurring upon the electron ionization process. Hence,
there is clearly a need for implementing additional tools to
improve the confidence level for compound identification. Kim
et al. described a model-based approach to control the false
identification rate of compounds using the distribution of the
difference between the first and second highest spectral
similarity scores.20

In addition to the calculated mass spectral match, Lee
retention index values, linear retention index (LRI), boiling
point correlation, NIST Kovats retention index values,
octanol−water partitioning, and steric energy calculations
have been taken into consideration for compound identifica-
tion.16,21 Retention indexing approaches have been described
using liquid chromatography coupled to MS detector as an
additional aid in compound identification.22−26 Kumari et al.
have also reported a similar approach in GC/MS for silylated
compounds.27 Several authors have already reported the
combined use of both mass spectral matching score together
with retention index (RI) value in order to enhance the
identification accuracy.28,29 Although chromatographic indexing
data has recently become popular, with NIST 14 containing
Kovats and LRI data for 385 872 and 82 337 compounds,
respectively, these measured RI data are not exhaustive in
comparison to the millions of known chemical structures and a
capability to predict their RI values. NIST values report RI
according to three GC column types having either standard
polar, nonpolar, or semistandard nonpolar stationary phases.
Several authors have attempted to predict chromatographic
retention data using mainly specific classes of compounds or
contextual databases.29−31 For example, Garkani-Nejad et al.
have studied the applicability of quantitative structure−
property relationships (QSPR) for the prediction of gas
chromatographic RI using a set of 846 toxicologically relevant

organic compounds.30 In addition, Stein et al. have assessed a
simple linear group incremental model for the estimation of
Kovats retention indices using 84 different chemical function-
alities but concluded that, although it could reliably eliminate
false identifications from automated library search systems, the
approach was very approximate.31

The present work focuses on building a robust LRI system
using QSPR-based modeling with the evaluation of two
commercially available software packages.32−35 Experimental
LRI values for 552 volatile and semivolatile reference standards,
analyzed by gas chromatography coupled to high-resolution
mass spectrometry (GC-HR-MS), were randomly split into
training and test sets. Once the two modeling approaches were
optimized from the training set and assessed on the test set,
LRI values were predicted for all tobacco, tobacco-related
smoke constituents36 as well as characteristic flavor com-
pounds,37 which represents a broad chemical space above
11 000 compounds. In order to enhance the confidence level of
compound identification, predicted LRIs were matched with
the experimental data together with accurate mass measure-
ments. Usefulness of LRI models to be able to predict LRI for
any new compound candidate and a repository database for
such information enhances the process for compound
identification. The next section discusses the strength of
using two modeling approaches and the overall increase in
confidence for chemical identification from the analysis of
complex samples before confirmation with reference standards.

■ EXPERIMENTAL SECTION
Chemicals. Phosphate buffered saline (PBS) solution, N,N-

dimethylformamide (DMF), dichloromethane (DCM), water,
methanol (MeOH), as well as odd n-alkane chemical retention
markers (pentane (C5), heptane (C7), nonane (C9), undecane
(C11), tridecane (C13), pentadecane (C15), heptadecane
(C17), and nonadecane (C19)) were purchased from Sigma-
Aldrich (Buchs, CH). All reference standards have been
described in the Supporting Information. The compounds
were weighed and solubilized in appropriate solvents to provide
stock solutions of concentration around 50 μg/mL per
individual compound. After subsequent dilution, these
compounds were analyzed by GC-HR-MS, either as a mixture
or unique compound in solution, to ensure accurate retention
index recording and to register reliable corresponding accurate
mass spectra in an in-house Agilent-based Personal Compound
Database Library (PCDL; Agilent Technologies, Santa Clara,
CA).

Gas Chromatography Conditions. Gas chromatographic
separation was realized using an Agilent 7890A instrument
equipped with a J&W DB-624 ultra inert (UI) column (30 m ×
0.25 mm internal diameter, 1.4 μm film thickness; Agilent,
Basel, CH). A conventional static headspace (HS) injection
method was used to monitor volatile compounds with a low
boiling point. An aliquot (1 mL) of reference standard(s)
solution diluted with water (or alternatively with DMF or PBS)
was introduced in a 20 mL HS glass vial, incubated for 10 min
at 100 °C, and 250 μL of the HS portion was injected via a
multimode inlet set at 220 °C, with a split ratio of 5:1. For the
liquid injection procedure, an aliquot (1 mL) of diluted
standard(s) solubilized in dichloromethane was transferred into
a glass autosampler vial and 1 μL was injected via a multimode
inlet set at 220 °C in pulsed splitless mode. For both headspace
and liquid injections, the column oven was first maintained at
35 °C for 2 min, before being ramped up to 250 °C at a
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constant rate of 10 °C/min. Finally, the temperature was
maintained at 250 °C for an additional 3 min (total run time of
26.5 min). The transfer line was held at 260 °C, and the
nitrogen flow rate was kept constant at 1.8 mL/min during the
whole analysis.
Mass Spectrometry Conditions. Detection was carried

out using a 7200A Q-TOF (quadrupole with time-of-flight)
accurate mass spectrometer system (Agilent Technologies,
Santa Clara, CA). A solvent delay of 4.8 min was used for the
liquid injection experiments in order to extend the filament
lifetime. Temperature of the ion source and emission current
were set at 230 °C and 35 μA, respectively. Mass spectrometric
(MS) data were acquired in full scan mode by scanning m/z
values ranging from 22 to 500 using positive electron (+EI),
negative chemical (NCI), and positive chemical (PCI)
ionization modes. Ammonia and methane were used as
reactant gases for NCI and PCI measurements, respectively.
Data processing was performed using MassHunter Qualitative
software (version B7.00.0, Agilent Technologies, Santa Clara,
CA). A background subtracted EI accurate mass spectrum for
each standard was exported in “compound exchange file” (.cef)
format and used to build an in-house PCDL accurate mass
library database, including retention time, molecular structure,
and experimental LRI data. This database library could then be
used as an additional search parameter.

Retention Index Prediction Modeling. All reference
standard structures were drawn using Accelrys Draw 4.1 and
each chemical structure was standardized by neutralizing
charges, generating canonical tautomers and adding hydrogens
using Pipeline Pilot 9.1 (PP) software.33,38 The compounds
were randomly split into training (n = 401, 73%) and test (n =
151, 27%) sets and Dragon software (version 5.5 for Windows)
was used to generate two-dimensional molecular descriptors.34

A Pipeline Pilot protocol with genetic function approximation
(GFA) was used with a linear model, a maximum equation
length of 10 up to 25 (bin size of 5), population size of 100, and
maximum generation of 5 000 (see the Supporting Informa-
tion). The Pareto algorithm (NSGA-II) was used as a scoring
method with adjusted R-square (Supporting Information).
Three types of learning algorithms, namely, using k-nearest
neighbors (k-NN), multilinear regression (MLR), and support
vector regression (SVR), were evaluated within RapidMiner
software (version 5)35 to improve the prediction model. This
software was also used to optimize the C parameter of the SVR
algorithm and to evaluate the generated models by performing
cross-validation with squared correlation (q2). The best
algorithm was chosen according to the correlation coefficients
of the training and test sets together with the cross-validation
score (q2 value) according to the number of descriptors
selected. In parallel, the same training and test sets were used to

Figure 1. Workflow used to (a) build and validate the retention index prediction models and (b) its application as an additional tool for increasing
confidence level in compound identification from complex matrix samples.
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optimize the LRI prediction model using ACD/ChromGenius
Batch software (version 2014, ACD/Laboratories, Toronto,
CA).32 In this case, the prediction is based upon calculated
physicochemical parameters and structural similarity with
known retention time contained within a knowledge base,
which is created using the training set compounds. The
calculated physicochemical parameters used are boiling point
(BP), log P, polar surface area (PSA), molecular volume (MV),
molecular weight (MW), molar refractivity (MR), number of
hydrogen donor (ND) and number of hydrogen acceptor
(NA). These parameters are used to create a prediction
equation.

■ RESULTS AND DISCUSSION

Analysis of Chemical Markers and Reference Stand-
ard Molecules Using Headspace and Liquid Injection
Modes. In total, 552 reference standards plus 8 odd n-alkanes
(chemical markers) were purchased, solubilized, and analyzed
by GC-HR-MS, generating unique background subtracted EI
accurate mass spectra. The selection of these standards was
based upon compounds already identified and/or reported to
be present in tobacco or tobacco smoke,36 plus additional
relevant flavor compounds.37 The chemical composition of
tobacco and tobacco aerosol fractions is very complex, with
over 7 000 constituents already reported.36 These comprise
highly hydrophilic to hydrophobic compounds as well as a
broad range of heteroatom functionalities, the majority having a
molecular weight below 1 000 Da (see Supporting Informa-
tion).36,39,40 The Agilent J&W DB-624 UI was selected as an
appropriate GC column for the analysis of volatile and
semivolatile organic compounds. Although the temperature
gradient conditions could have been optimized to enable a
better chromatographic separation of specific key compounds,
the core application for the method is untargeted screening
analysis. Therefore, there was a need to balance between an
adequate chromatographic separation, while reducing the run
time in order to minimize instrumental drift. Considering this,
and in order to reduce the complexity for the computational
chemistry tool to build prediction models for retention index,
the column temperature was ramped using a linear gradient.
Reference compounds having a BP below 90 °C (which
corresponded to a LRI below 627) were injected in headspace
mode, whereas those having a higher BP were injected in liquid
mode. The LRI cutoff value of 627 corresponds to the solvent
delay of 4.8 min applied for liquid injection mode, during which
time the detector filament is switched off in order to increase its
lifetime. Several reference compounds were analyzed using both
injection modes. A set of odd n-alkane chemical markers (from
pentane up to nonadecane) was used to bracket these reference

standards for the calculation of LRIs, which were used to build
the prediction models.

Building a LRI Prediction Model Using Reference
Standards. Prior to analysis, the compounds were randomly
split as training (n = 401) and test (n = 151) sets following
standard default recommendations.41 Figure 1a summarizes the
workflows used to calculate and assess LRI prediction models.
The required parameters for ACD/ChromGenius software and
the RapidMiner approach were optimized using the same
training set of compounds.

RapidMiner Approach. A total of 2 489 two-dimensional
descriptors were calculated using Dragon Plus software (version
5.5) for the training set. The descriptors having only a minor
contribution were removed from the combination of constant
variables, near-constant variables, and variables with pair
correlation values above 0.98. According to these criteria, a
reduced list of 466 descriptors was kept for this evaluation and
the best model was chosen from the algorithm showing the
highest cross-validation (q2) using leave-many-out method-
ology. In order to minimize the number of descriptors to the
most relevant ones, the performance of the model was
evaluated using either 10, 15, 20, 25, or all (n = 466)
descriptors for each of the three algorithms tested (MLR, k-
NN, and SVR). Hence, MLR algorithm using only 20
descriptors demonstrated the optimal prediction models (see
optimization results in the Supporting Information). The
model relevant descriptors belonged to seven major categories
comprising constitutional descriptors (n = 4), topological
descriptors (n = 4), connectivity indices (n = 2), functional
group counts (n = 3), atom-centered fragments (n = 3),
molecular properties (n = 3), and a single 2D-binary
fingerprinting descriptor (Supporting Information). Once the
prediction model was optimized, the correlation coefficients for
the training and test sets were calculated to be 0.966 and 0.949,
respectively, with a cross-validation q2 value of 0.960 (Table 1).

ACD/ChromGenius. trans-Nicotine-1′-oxide, 1-dodecene-
1,2-13C2, and 2,5-dimethyl-13C2-furan in the training set, and
vinyl acetate-13C2 and benz-13C6-aldehyde in the test set were
not recognized by ACD/ChromGenius. In the case for trans-
nicotine-1′-oxide, this was due to the presence nitrogen-oxide
quaternary bond. For the stable labeled internal standards used
to provide semiquantitative data, the software did not recognize
compounds containing a carbon 13 isotope. Experimental LRI
values were uploaded into ACD/ChromGenius Batch 2014 for
the remaining 398 compounds used for the training set (n =
149 remained in the test set). In this approach, LRI prediction
was based upon physicochemical parameters calculated within
the ACD/ChromGenius software, as well as structural
similarities registered from the training set. Several equation
and parameter options available within the software were

Table 1. Results Summary Obtained from RapidMiner and ACD/ChromGenius Optimized Prediction Models

RapidMiner ChromGenius

training set test set training set test set

no. of ref compounds n = 401 n = 151 n = 397 n = 149
correlation coefficient r2 = 0.966 r2 = 0.949 r2 = 0.977 r2 = 0.976
cross-validation Q2 = 0.96 NA residual standard error: 53.635
accuracy within (85−115%) n = 392 n = 145 n = 392 n = 147
accuracy outside (85−115%) n = 9 n = 6 n = 5 n = 2

Extended Application
no. of ref compounds n = 23 n = 23
accuracy 91.0−109.8% 87.5−112.2%

Analytical Chemistry Article

DOI: 10.1021/acs.analchem.6b00868
Anal. Chem. 2016, 88, 7539−7547

7542



assessed in order to optimize the modeling. The correlation
coefficients of both training and test sets, as well as their
corresponding residual standard error values were calculated
from different number and/or percentage of compounds
similarity (see optimization results in Supporting Information).
The model with the best correlation and lower residual
standard error value for the test set was selected for use, since
ACD/ChromGenius software was not able to perform a cross-
validation. The best results were obtained using a structural
similarity search option using the Dice coefficient, with
automatic software selection of the 15 most similar
compounds.42 These option settings provided a coefficient of
correlation for the training and test sets of 0.9767 and 0.9762,
respectively, with a residual standard error value of 53.635
(Table 1).
To our knowledge, according to the current literature, these

are the most accurately predictive LRI models built so far, for
the largest set of diverse molecules. The test set of compounds
(n = 151 and n = 149 used for RapidMiner and ACD/
ChromGenius software, respectively) was used to confirm the
performance of the prediction models (Figure 2a,b). In order to
further investigate the performance of the two models,
predicted LRI values were compared with experimental values
and expressed in terms of accuracy (percentage). Figure 2c,d
show the accuracy data plotted against the experimental LRI
values. This representation rapidly highlights outlying com-
pounds and pinpoints weakly predicted classes of compound
for each software. For the reference standards used in the test

set, prediction accuracy values ranged between 76.8 and 171.4%
and between 86.0 and 126.0%, for RapidMiner and ACD/
ChromGenius, respectively. All compounds were classified
according to their chemical properties into one or more of the
47 classes as defined by Perfetti and Rodgman,36,39,40 according
to the nature of the compounds (see Supporting Information).
From the 151 compounds used in the test set, 6 generated
accuracy values outside the 85−115% limit using RapidMiner
prediction (values arbitrarily defined), namely, acetonitrile
(76.8%), triethylcitrate (83.0%), 2-methyl-p-benzoquinone
(116.3%), 2-methyltetrahydrofuran (116.3%), diisopropylether
(119.5%), and 2-bromo-2-chloro-1,1,1-trifluoroethane
(171.4%). These results, combined with those obtained for
the training set (n = 401), revealed 9 additional compounds
falling outside this expected range, namely, divinylacetylene
(69.4%), 1H-imidazole-1,2-dimethyl (81.1%), 3-methylpyrida-
zine (83.0%), furanone (83.3%), N,N-dimethylformamide
(84.8%), 2-methylfuran (117.8%), isopropyl formate
(119.5%), salicylaldehyde (120.4%), and diacetyl (123.4%).
Some of these outliers can be explained as either having
insufficient or no representative compounds present in the
training set for the related compound class (n = 0 for quinone
or mixed halogens; n = 1 for imidazole, pyrazidine, amide, or
aldehyde-phenol as combined functions; n = 2 for alkene-
alkyne or alcohol-ester as combined functions, respectively).
Using ACD/ChromGenius prediction, only 2 out of the 149

compounds used in the test set had accuracy values outside
85−115%, namely, 1-hexyne (115.7%) and 3-pyridinol

Figure 2. Correlation plots of calculated linear retention indices obtained from (a) RapidMiner and (b) ACD/ChromGenius software against
experimentally derived values for the analysis of volatile and semivolatile reference standards (test set) using GC-HR-MS. Reference standards used
for the test set have been assigned in a circle whereas those in a triangle refer to additionally added, confirmed compounds. Accuracy data of
predicted LRI versus experimental data for (c) RapidMiner and (d) ACD/ChromGenius for the reference compounds used in the test set. A dashed
line has been included to delimit compounds outside an arbitrary accuracy limit values of 85−115%.
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(126.0%), due to the absence of any compound representative
of the alcohol/pyridine class. An additional 23 reference
compounds were analyzed as a validation set. All accuracy
values (both models) fitted well within expectations (depicted
as triangles in Figure 2 and Supporting Information). In
conclusion, 96.55% of all compounds tested using RapidMiner
software (169 out of 174 reference standards) fitted well within
a prediction accuracy of 85−115%. For ACD/ChromGenius,
this percentage was slightly higher (98.84%) with 170 out of
172 reference standards falling within a prediction accuracy of
85−115% (Table 1).
Assessment of LRI Data Collected by External

Laboratories. The main advantage of using LRI values instead
of absolute retention times is the possibility to compare results
across different instruments and laboratories. Indeed, these
values are unaffected by different analytical conditions such as
one continuous temperature gradient and column length;
however, comparability is more reliable when similar column
stationary phase materials are used (e.g., methyl phenyl
cyanopropyl polysiloxane, in our case). To corroborate this
hypothesis, experimentally determined LRI values were
benchmarked against published data for the analysis of volatile
organic compounds using a DB-624 GC column.43−45 These
data revealed a strong correlation (r2 above 0.9958) between
LRI values across laboratories (see the Supporting Informa-
tion). From this data comparison, the correlation could be
further improved by including even n-alkanes (only odd n-
alkanes were used in our work). From these results, it appears
extremely beneficial to use the retention indexing feature within
NIST 14 mass library search option (that contains currently
385 872 RI values for 82 868 compounds) in order to reduce
false positive compound identification.46 Obviously, attention
must be paid to published LRI values with respect to the
similarity of GC column stationary phase material used.

LRI Prediction Models for Unknown Analysis in
Accurate Mass Chemical Ionization and/or EI Acquis-
ition Modes. All subtracted EI mass spectra generated from
the analysis of reference standards were uploaded into an in-
house PCDL accurate mass database library (n = 607
compounds). The identification of compounds from the
analysis of complex matrix samples is realized using Unknown
MassHunter software. The deconvoluted peaks are first
compared to our accurate mass PCDL library for compound
identification with the experimental LRI tolerance value set
within 10 units. For the remaining unknowns, the EI mass
spectra were compared against commercialized libraries.
Although the ultimate compound identification step comprises
matching the results of putative identification with reference
compounds analyzed under identical analytical conditions, this
may not be practically feasible due to either cost or commercial
availability of reference compounds due to troublesome
chemical synthesis or compound stability issues. Moreover,
these practicalities are even more pronounced for screening
analysis in complex matrixes, due to the numbers of
compounds involved. Therefore, there is an overall need to
strengthen compound identification using alternative solutions,
despite the availability of accurate mass instrumentation on the
market, which are able to greatly reduce the number of possible
hits. As a complementary tool, LRI prediction values from other
databases (e.g., flavors and tobacco-related compounds, in our
research context) should be available to increase the confidence
level for compound identity. Ideally, LRIs could be predicted
for millions of compounds present in public databases such as
PubChem2,3 and ChemSpider,4 especially considering the low
quantity of relevant data available in Wiley and NIST 2014
mass spectral databases (82 337 compounds).1 As a proof of
concept, all compounds registered in an in-house tobacco,
tobacco-related compounds, as well as characteristic flavor
compounds (n = 11 000), known as Unique Compound

Figure 3. Compounds clustered according to the difference in LRIs predicted by ACD/ChromGenius and RapidMiner software. LRI values for all
chemicals related to tobacco, tobacco aerosol, and flavors were put in bins of ΔLRI values by size of ±100 units. Inset in the right corner of the figure
depicts the binning of compounds from ΔLRI values within the ±100 units (main graph) in bins by 25 units.
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Spectra Database (UCSD), were used.38 LRI values were
predicted for each compound, using both ACD/ChromGenius

and RapidMiner approaches. Only chemicals with predicted
LRI values between 500 and 1 900 units (i.e., matching values

Figure 4. Case study for the assessment of unknown compound (C10H10) observed during the analysis of a 3R4F aerosol reference cigarette analyzed
by GC-HR-MS. The calculation of final matching score takes into account both NIST 14 Agilent score and precision of LRI experimental values
against predicted ones calculated from RapidMiner and ACD/ChromGenius models (see calculation formula in the Supporting Information figures).
(a) EI accurate mass spectrum of the unknown compound eluted at a retention time of 15.433 min (LRI = 1204.016) and (b−h) EI nominal mass
spectra of NIST 14 candidates.

Analytical Chemistry Article

DOI: 10.1021/acs.analchem.6b00868
Anal. Chem. 2016, 88, 7539−7547

7545



within C5 and C19 odd n-alkanes) were used as relevant
plausible compounds, observable under our analytical con-
ditions (i.e., DB-624 column and temperature gradient
conditions). Beside the compounds used within the training
and test sets (n = 552), an additional 4 718 chemicals were
suitable candidates for the chromatographic conditions. Figure
3 represents the number of compounds clustered according to
LRI difference (ACD/ChromGenius values minus RapidMiner
values) using bin sizes of 100 units. Overall, 62.2% of the
compounds (n = 2 931) had LRI values predicted by both
software approaches within 100 absolute units of each other. A
script in Pipeline Pilot was developed to back calculate absolute
retention time values from the mean of the LRI values
predicted by both software approaches and odd n-alkanes
reference standard retention times. A comma separated value
(.csv) file was then created and used in combination with
processed CI and/or EI accurate mass raw data obtained from
GC-HR-MS analysis (Figure 1b) to increase the confidence
level for compound identification and, most importantly, to
lower the rate of false positive results. An additional set of 23
reference standards analyzed recently provided a good match
between experimental and predicted values, within accuracy
between 87 and 112% (Figure 2c,d). Figure 4 highlights a
particular example where 3-methyl-1H-indene was recently
confirmed with the analysis of reference standard. The EI
accurate mass spectrum (Figure 4a) of the compound eluted at
a retention time of 15.433 min (experimental LRI of 1 204) was
search against the NIST 14 database library through Mass-
Hunter Unknown Analysis software. 1,1a,6,6a-Tetrahydro-
cycloprop[a]-indene was retrieved as the most probable
compound, and we have listed six alternative proposal hits
matching the unknown MS spectrum with good scoring from
89.3 up to 92.1% (Agilent scoring). Nominal EI mass spectra of
all these compounds, having similar formulas of C10H10,
revealed a close fragmentation pattern (Figure 4b−h). LRI
values of all these candidates were predicted with both
RapidMiner and ACD/ChromGenius models, and a final
candidates scoring was calculated by combining NIST 14 score
and differences between experimental LRI value to the
predicted ones. Under these considerations, 3-methyl-1H-
indene was ranked as the first candidate with an improved
discriminatory power (final score of the seven proposals
ranging from 77.54 up to 89.58%). Moreover, this example
illustrates the impact of keeping the two prediction models for
unknown analysis. Indeed, 1,1a,6,6a-tetrahydrocycloprop[a]-
indene or 1-methyl-4-prop-1-ynylbenzene would have been
ranked as first proposal, respectively, using ACD/ChromGenius
or RapidMiner models only (Figure 4). In cases where no
positive hit could be confirmed with a reference standard, other
databases (e.g., specific flavor databases, ChemSpider or
PubChem) could be used to identify compounds using
elemental formulas determined from CI data as a query
constraint. The application of LRI prediction models to large
sets of molecules, together with a comparison of experimental
with in silico fragmentation spectra will provide a highly relevant
approach to strengthen the confidence level for compound
identification before final confirmation.

■ CONCLUSION
A GC-HR-MS method using a DB-624UI column with
headspace and liquid injection modes was developed to
monitor volatile and semivolatile compounds present in
tobacco aerosol and aerosol fraction samples. A set of reference

standards (n = 552), covering a broad range of chemical
diversity, was analyzed and experimental data were used to
build a personal compound database accurate mass library.
Linear retention index values were calculated by bracketing
with odd n-alkanes, from pentane up to nonadecane. Two
software approaches, RapidMiner (coupled to Dragon) and
ACD/ChromGenius, were used to build independent LRI
prediction models using a training set of compounds (n = 401).
The accuracy of the models was assessed using a test set of
compounds (n = 151) plus an additional set of 23 compounds
analyzed recently. Both prediction models performed very well
with correlation coefficient for the training and test set of 0.966
and 0.949 for RapidMiner and 0.977 and 0.976 for ACD/
ChromGenius, respectively. Although these models could be
improved by increasing the number of representative
compound classes, all chemicals used in the test set fitted
within an accuracy limit of 85−115% (except with one mixed
halogen compound: 2-bromo-2-chloro-1,1,1-trifluoroethane)
when using the mean predicted value of both software
approaches. Indeed, mean LRI predicted values for putative
compounds, where the smallest differences between the two
predicted values occurred, was found to be a reliable tool for
complementing accurate mass measurements and strengthening
the confidence level for compound identification during the
analysis of complex matrixes. These models will be dynamically
improved when additional experimental data become available.
In addition, it has been demonstrated that sharing retention
index data across laboratories is feasible and will greatly assist in
the difficult task to unambiguously identify compounds present
in complex matrixes. Overall, the use of predicted linear
retention index enables one to shorten the list of putative
chemicals to order or synthesize for full confirmation.
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