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SUMMARY 

We develop the application of age, period and cohort models to the representation of tables of age- and 
period-specific rates. A derivation is given by way of a familiar graphical technique. The identifiability problem 
is discussed, identification techniques are reviewed and a new approach is recommended that is based upon the 
success of the three two-variable submodels. Other constraints are introduced that enhance interpretation. 
Examples are given for two sites of cancer. This approach is contrasted with other methods designed to 
demonstrate trends. Finally, standard errors of the parameters and tests of goodness of fit are discussed. 
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1. INTRODUCTION 

Mortality rates for a particular cause are often provided in the form of a matrix in which the rows 
correspond to age-groups and the columns to periods of time. This matrix is obtained from two 
similarly sized ones containing the numbers of deaths and person-years at risk, respectively. Our 
approach to the description of mortality trends is illustrated by using cancer mortality rate tables 
for England and Wales. l-4 Over sixty such matrices have been formed, each for a combination of 
sex and site. Each has five-year age-groups and five-year periods of time. We only consider deaths 
between 1951 and 1980 among those under seventy. These measures are introduced to increase 
diagnostic reliability. The lower limit of age is decreased until a further decrease would result in an 
element of the matrix of rates being based upon less than twenty deaths, or an age less than fifteen 
years is reached. Tables I and II contain mortality rates for bladder cancer among males and lung 
cancer among females as examples. A larger selection of results5 and the complete set6 are available 
elsewhere. 

We use the following notation: 

I = number of consecutive T-year age groups 
J = number of consecutive T-year periods 
K = number of cohorts (=I +J -1) 
R = (r;) is the matrix of rates 
D = (dii) is the matrix of numbers of deaths 
Y = (yii) is the matrix of person-years at risk 

The three matrices R, D and Y are of size I x J, with rii = dii / Yii for all i and j. 
In Section 2 traditional approaches to these data are discussed. These lead to the derivation of 
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age, period and cohort models contained in Section 3. The ensuing identification problem is 
described in Section 4, which is followed in Section 5 by an account of identification techniques 
used in previous work with these models. In Section 6 we specify our choice of solution. The final 
two sections contain results and a discussion of goodness of fit and stability of the models. 

2. TRADITIONAL APPROACHES 

Methods that have been used to describe rate matrices may be classified according to two criteria. 
The first is whether they provide a vector summary of the rates or represent all cells. The second is 
whether they describe changes indexed by period or by birth cohort. We illustrate the possibilities 
by discussing two approaches that will later become useful in the evaluation and derivation of our 
technique. 

Using the data in Tables I and II we may indirectly standardize the period death rates for age 
with respect to the age-specific rates of 1966-1970, for example. Thus we calculate the ratio of the 
number of deaths observed in any five-year period to the number that would have been expected 
had the 1966-1970 rates applied to that period. This results in standardized mortality ratios 
(SMRs) for each period which are shown in the final rows of Tables I and II. For both sites the 

Table I. Mortality from bladder cancer in men in England and Wales during 1951-80, ages 40-69, ICD code 
188 (8th revision). Death rates per million person-years at risk. The leading diagonal corresponds to the 1910/1 

cohort. Standardized mortality ratios (SMR) with respect to age-specific rates for 1966-1970. 

Period of death 
1951-55 1956-60 1961--65 1966-70 1971-75 1976-80 

40--44 13·6 16-3 14·4 12·2 11·4 9·2 
45-49 38·8 35·2 33-4 34·0 31·5 23-9 
50-54 85·7 68·9 70·7 71·3 66-9 65·0 

Age at death 55-59 149·4 152·8 144·8 147·5 138·5 131·3 
60-64 269·3 264·8 284·5 276-6 266-2 244·5 
65-69 403·6 430-5 448·6 508·2 465·0 458·8 

SMR 0·94 0·94 0·96 1·00 0-94 0·89 

Table II. Mortality from lung cancer in women in England and Wales during 1951-80,ages 25--69, ICD codes 
162 and 163 (8th revision). Death rates per million person-years at risk. The leading diagonal corresponds to 
the 1925/6 cohort. Standardized mortality ratios (SMR) with respect to age-specific rates for 1966-1970. 

Period of death 
1951-55 1956-60 1961--65 1966-70 1971-75 1976-80 

25-29 5·5 4·0 4·3 3·9 3·9 2·8 
30-34 15·1 14·8 11·2 10-9 9·0 7·8 
35-39 28·5 32·1 32·2 31·4 26·3 26·5 

Age at death 40--44 52·1 61·5 68·1 82·0 67·8 62·5 
45-49 88·7 105·5 137·3 156-6 183·0 159·5 
50-54 139·2 170·5 218·2 285·8 330-7 360·3 
55-59 206·3 243·2 309·7 402·5 499·0 570·3 
6o-64 287·7 332·7 424·0 519·4 676-7 857-9 
65--69 356-6 384·3 518·5 661·9 816-1 1030-5 

SMR 0-55 0-63 0-80 1·00 1-21 1·43 
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SMRs have a similar pattern to the rates in the oldest age-groups. These age-groups have the 
highest rates, and tend to dominate the SMR. The pattern should not, therefore, be interpreted as 
an indication that rates at all ages behave similarly. We need to consider the behaviour in separate 
age-groups. Other choices of age-range for standardization will not yield a consistent pattern. 

Another traditional approach to these data has been to plot the rates against age, joining all 
points on a corresponding cohort. 7 • 8 Such points appear along descending diagonals of the rate 
matrix. For many sites it has been observed that cancer mortality rates increase roughly as a power 
of age at death, 9 so that a doubly logarithmic scale is natural. In Figures 1 and 2 the results of this 
process are shown for the data in Tables I and II, alternate cohorts being plotted for clarity. In both 
cases the rates may be seen to increase to a maximum for particular cohorts and subsequently 
decline. Only a few rates contribute to the earliest and latest cohorts, and for recent cohorts these 
are for young people and are therefore based upon smaller numbers of deaths. 

Standardization collapses the rate matrix down its columns to provide a period-based summary 
vector. This may also be done down the diagonals (cohorts) to produce a standardized cohort 
mortality ratio (SCMR). 10 SCMRs are shown on Figures 1 and 2. Summary vectors may be 
constructed in even more complicated ways.11 The display of rates (originally due to Case) 
represents all available data points and emphasizes the importance of cohort. Other combinations 
are possible. In all, six Case-like displays are available ifwe plot rate (or log rate)against one ofage, 
period or cohort and then join points corresponding to one of the others. Also, we may display all 
the rate values by considering the rates as forming a surface and making a perspective plot, 
thoughtfully choosing the eye position. 12 
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Figure I. Mortality from bladder cancer in men in England and Wales during 1951-80, ages 40-69, ICD code 
188 (8th revision). Death rates per million are plotted against age at death on a doubly logarithmic scale. 
Points corresponding to the same cohort are joined, but only alternate cohorts are plotted for clarity. 

Standardized cohort mortality ratios are included in brackets. 
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Figure 2. Mortality from lung cancer in women in England and Wales during 1951-80, ages 25-69, ICD 
codes 162 and 163 (8th revision). Graph produced as for Figure l. 

In what follows we have two main aims in developing the method. Firstly, we seek to describe the 
simultaneous effect of period- and cohort-indexed factors rather than just one set. Secondly, we 
seek to simplify, but not oversimplify, the available mass of data. The final result is designed to have 
a ready interpretation and visual simplicity. 

3. AGE, PERIOD AND COHORT MODELS 

Figures 1 and 2 are the starting point for the derivation of these models. Within each Figure the 
cohort curves may be seen to have a similar shape. The effect of differing cohort is to shift the entire 
curve up or down. In these cases the cohort curves are extremely straight, but for other sites this is 
not so. Thus generally the entire set of rates may be summarized by a curve and a set of shifts. The 
curve is determined by a set of values corresponding to age; the shifts correspond to cohorts. 
Effectively we are fitting the model 

logrii = loga;+logc,-;+i (1) 

where the log a; terms describe the curve and the log c,-;+ i terms are the shifts. 1-i + j is the 
cohort corresponding to age-group i and periodj, the cohorts being numbered from the earliest in 
time. The only remaining requirement is the specification of an origin for measuring the shifts. 
Once this is provided, a unique solution is available. Exponentiating (1), the rate is seen to be 
approximated as a product of a; and c l-i+i terms, which we refer to as the age values and cohort 
values, respectively. 

It is quite possible that there will also be an influence on the rates due to factors indexed by 
period of death. Improvements in diagnostic technique might occur at a point in time and affect 
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recorded mortality rates at all ages. Treatment improvements could act similarly, as could other 
environmental influences. A set of period of death values, Pi• may be fitted in a similar way. 
Although the three variables age, period and cohort are not independent, they may each exert a 
simultaneous influence in that they index contributory causal factors. 

We adopt a general least squares formulation for this problem of which (1) may be seen to be a 
particular case. First we define the residual function,f, by 

f (a, p, c) = L dii (log riJ -log ai -log pi-log c 1-i+ i)2 

i,j 

(2) 

The weights dii are the deaths, as before, and are chosen because they are inversely proportional to 
the sampling variances of the logarithms of the rates, 13 where the number of deaths is considered as 
a Poisson random variable. Partial differentiation with respect to log ai, log p1 and log c1c produces 
a set of I + J + K normal equations in the I + J + K variables. However three of the equations are 
redundant as they are re-expressions of the others. Two additional equations may be provided by 
the need for two origin fixes. One further equation is needed and this is the source of the 
identification problem discussed in Section 4. Before that we consider the origin fixes. 

At the minimum off we find that 

r1ogp,(Ldij)+r1ogc1c( L d,,)=r(logrij-loga;)d;j (3) 
j i le {(i,J):/-l+j=lc} i,j 

This relationship suggests three possible constraints, of which any two may be taken to provide an 
origin fix, forcing the other to be satisfied at the minimum. 

ConA: L (log rlJ - log addlJ = 0 (4) 
id 

ConP: ~ logpJ( ~dii) = 0 (5) 

ConC: L log c" ( L dii) = 0 (6) 
le {(i,j):/-i+j=lc} 

If ConA is satisfied the age values may resemble the corresponding age-specific rates. If ConP is 
satisfied a typical period value is unity. If ConC is satisfied a typical cohort value is unity. Seven 
models may then be defined. 

Age model: Given Po satisfying ConP and c0 satisfying Cone minimize! (a, p0 , c0 ) over a. ConA 
will be satisfied at the minimum. 

Period model: Given c0 satisfying Cone and a0 satisfying ConA minimizef(a0 , p, c0 ) over p. 
ConP will be satisfied at the minimum. 

Cohort model: Given a0 satisfying ConA and p0 satisfying ConP minimizef(a0 , p0 , c} over c. 
ConC will be satisfied at the minimum. 

Period and cohort model: Given a0 satisfying ConA minimizef(a0 , p, c) over p and c. Requiring 
ConP at the minimum ensures Cone. Requiring ConC ensures ConP. The solutions are the same. 

Age and cohort model: Given p0 satisfying ConP minimizef(a, p0 , c) over c and a. Requiring 
ConC at the minimum ensures ConA. Requiring ConA ensures ConC. The solutions are the same. 

Age and period model: Given c0 satisfying ConC minimize f (a, p, c0 ) over a and p. Requiring 
ConA at the minimum ensures ConP. Requiring ConP ensures ConA. The solutions are the same. 

Age, period and cohort model: Minimizef(a, p, c) over a, p and c. Requiring any two of ConA, 
ConP and Cone at the minimum ensures the other with the same solution. However extra 
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requirements are needed to resolve the identification problem. 
All of these models are additive on the log scale, multiplicative on the arithmetic scale. The 

simplest a0 that satisfies ConA is given by 

log a0; = ( t dii log rii) / ( t dii) (7) 

We suggest two possible choices for p0 and c0 • In the null case in which we want to disregard 
completely variation indexed by period we may use p0 = 1 J (the J-vector of ones). Correspondingly 
we may use c0 = l K· As an alternative we may make an allowance for some period indexed 
variation by using, for example, the SMR. Although this will not satisfy ConP we may find a vector 
proportional to it which does so. Similarly we may make components of c0 proportional to the 
SCMR to satisfy Cone. 

Each solution from one of the submodels may be regarded as a point in Euclidean space of 
dimension I + J + K denoted by R 1 + J + K_ All considerations of solutions as points in Euclidean 
space will refer to the logarithms of the sets of values and not the values themselves. The lack of 
identifiability of the full three variable model causes solutions satisfying the constraints to lie on a 
straight line in a 1+J+K. 

4. THE IDENTIFICATION PROBLEM 

In this section we lay aside the requirement that solutions of the full three variable model should 
satisfy the constraints. This is done purely for notational and illustrative convenience. 

Let (a, p, c) be a minimum of ffor the full model. Another minimum is given by (a', p', c') where 

log a; = log a1 +µ+A. (I - i) 

log pi= logpi+v+A.j 

loge~= logct-µ-v-A.k 

(8) 

The summation of log a;, log pi and log ci corresponding to a particular rate (rii) causes the 
cancellation of all terms in A., µ and v. For µ and v the cancellation is immediate. These two 
parameters correspond to the fixing of origins. For A. the cancellation corresponds to the relation 

k=l-i+j (9) 

which arises from the intrinsic dependence of age, period and cohort. When the residual function,/, 
is unweighted and corresponding constraints are applied, the midpoint of each set of logarithms of 
values becomes fixed. In this case the A. terms produce extra shifts proportional to the distance from 
the midpoint. For small changes in l these look like rotations. The signs in (8) force the age and 
cohort values to rotate in an opposite direction to the period values. The introduction of weighting 
frees the midpoint but the effect of a small change in A. is similar in practice. 

To illustrate the problem, consider the following rate matrix. 

( 
ex ex0 ex02 , 

R = fJ fJ0 /J02 .) 

}' y0 y02 

One possible identification (which fits the rates perfectly) is 

age values: ex, /J, }' 
period values: 1, 0, 02 

cohort values: 1, 1, 1, 1, 1 

(10) 

(11) 
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age values: 

period values: 
cohort values: 

IX, {JO, y8 2 

1, 1, 1 
0- 2, 0- 1, 1, (}, 82 

251 

(12) 

The first identification seems to imply no variation indexed by cohort. The second seems to imply 
no variation indexed by period. Indeed, intermediate or even more extreme solutions may be 
generated with equal facility. Thus no internal means may be devised for the estimation of the 
gradients in the sets of values. First differences are inestimable (vial) and gradients are arbitrary. 
The logical dependence between age, period and cohort is the root of this problem. All that would 
seem justified would be the statement that the rates are increasing (8 > 1), stable (8 = 1) or 
decreasing (8 < 1). 

Certain features are independent of identification. For example any differences higher than first 
order are estimable because l terms cancel. Also some estimates of future rates are not changed. 
Thus in our example the period and cohort-values are linear on the log scale for all identifications. 
Extending them linearly and recombining produces a set of rate estimates («83, fJ83, y83 for the 
next period etc.) that are independent of identification. 

Before discussing our approach to this problem we provide a brief review of other treatments of 
this form of modelling, considering their solution to the identification problem. 

5. PREVIOUS USE OF AGE, PERIOD AND COHORT MODELS 

The earliest use of this form of modelling was due to Kermack et al. in 1934. 14 They used an age and 
cohort model to study all-cause death rates. This approach was extended by others to treat 
tuberculosis, 15 breast cancer16 and a variety of other sites. 1 7 These uses were descriptively 
successful, had no identification problem and demonstrated that a submode! may often be 
adequate. 

Barrett has published several papers 13• 18- 21 treating cancer mortality for a particular site in an 
epidemiological context by using the full model. He obtains particular identifications by arbitrarily 
assigning value zero to two parameters, and equating a pair. Clearly the choice of parameters can 
drastically affect the appearance of the sets of values. Grouping sets of parameters is equivalent to 
equating them and produces similar results. Barrett recognizes the problems and recommends 
looking for patterns that go beyond linear trends. In common with Price22 features such as peaks 
are sought. Yet even these are identification dependent. 

Another approach has been to specify the distributional form of one of the sets of values. The 
form chosen is often derived from the appearance of the rates. Success is dependent upon the 
appropriateness of the distribution. Some strong prior suggestion is needed. Greenberg et al. 23 

analyse syphilis incidence by constraining the age values to have a Pearson Type III distribution to 
allow for an early peak and rapid decline. Beard24 uses the distribution ofage-specific rates at a point 
in time for his age values and a measure of cohort cigarette consumption for his cohort values, in 
analysing lung cancer. Day25 considers rate matrices for the same site but for different cancer 
registries and constrains the age values in the different registries to be the same. Finally Feinberg 
and Mason, 26 treating measures of educational attainment, equate age values for six consecutive 
groups, arguing that once a certain age has been reached advances in educational attainment 
become negligible. All four of these papers involve some external criteria to provide an 
identification. Meaningful results are dependent upon the suitability of the criteria. Day is able to 
perform conventional tests of the assumption of equal age values, so internal checking is available 
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in his approach. It is not likely that the assumption would hold for different sites, and this analysis 
cannot be used for just one table of rates. 

Others have seen the existence of a linear trend in a set of values (or their logarithms) as an 
indication that the correct identification should remove this as far as possible. The justification for 
this has been that stable patterns of values would be represented as such, whereas previously they 
had been seen as systematically changing. Sacher27 achieved this for cohort values by forcing the 
regression line through the first six of them to be flat. Holman et al. 28 equate the first and last 
period values to eliminate any linear trend, but then argue against the existence of significant 
period values. Pullum29 adopts a more sophisticated approach to the removal of linear trend. He 
measures how far each of the three sets oflogarithms of values departs from linearity. The nearer a 
set to linearity, the less trend that set is given in the final identification. The simple example of 
Section 4 highlights the problems associated with this technique. Small perturbations of the rate 
matrix could result in large changes in identification. Robustness of the identification must be an 
important consideration. 

James and Sega!30• 31 develop two models in which an age/period interaction is introduced. 
Specifically 

(13) 

and the alternative in which an age term instead of a period term stands by itself. These models do 
not suffer from lack of identifiability, but this must be balanced against an increase in descriptive 
complexity and computational effort required to attain the minimum, the need to justify the form 
of model chosen and the instability of the parameter estimates under certain conditions. For 
example, in (13), if either all i,1 values are equal or the oc1 values are linear then no unique solution is 
available and the parameters are highly unstable. For many cancer sites the logarithms of rates are 
approximately linear with logarithm of age so that this may often be a genuine difficulty. 

Much of the recent use of age, period and cohort modelling has been in demography. A recent 
debate32 - 37 in this field has centred upon both the practical33 and logical36 foundation of the 
method. Hobcraft and Gilks37 have attempted to resolve the latter problem by demonstrating that 
although the variables are dependent, there may well exist influences that may be indexed by each of 
them, and that act independently to produce the observed mortality rates. Their approach to the 
question of the appropriateness of the additivity assumption is referred to in Section 8. 

6. CHOICE OF IDENTIFICATION 

Solutions for any of the submodels referred to in Section 3 may be obtained by a direct matrix 
inversion of the set of normal equations with constraints. For the age and period models, given c0 

satisfying Cone let the unique minimum of f (a, p, c0 ) be located at Xe= (i, f, c0 ). 

Correspondingly we define Xp for the age and cohort model, Xa for the period and cohort model. 
For each of these solutions we may measure the goodness of fit by the mean residual sum of 
squares. Thus 

1 
Pc= (l - l)(J _ 1/(Xc) 

1 
Pp=(/- l)(J-2)/(Xp) (14) 

1 
Pa= (I_ 2)( J _ 1/(Xa) 
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define the mean residual sum of squares for the two variable submodels. The smaller these values, 
the better the fit. None is likely to be zero in practice, but if one is, perfect fit has been obtained. 
Indeed it is sometimes possible to explain the variation quite adequately using just two variables. 

Solutions to the full model are parametrized by l. We denote solutions by X(l) and the mean 
residual sum of squares by p where 

1 
P = (/-2)(J-2/<X(l)) (15) 

is independent of l. 
How different are the two variable solutions from the set of possible three variable solutions that 

is parametrized by l? We may use Euclidean distance inR'+J+K to measure this, which we shall 
denote by 11 · 11· This is the square root of the sum of all squared co-ordinate differences and 
represents the natural extension of the concept of distance in lower dimensional spaces. As always 
the points in Euclidean space have the logarithms of the sets of values as their co-ordinates, we then 
define 

dc(A) = IIXc-X(l)II 
dp(A) = IIXp-X(l)II 

d8 (A) = IIXa-X(l)II 
(16) 

Each of these is-a convex quadratic function of l that is minimized by the projection of the two­
variable solution onto the line of three-variable solutions. If we were to select the point reached by 
projection from a single two-variable model we would be in effect constraining the other variable to 
show no overall linear trend. Thus in the simple example of Section 4, the age and period model 
solution Xe based on c0 = 15 is actually contained in the line offull model solutions and allows no 
trend in cohort values, since projection is not needed. 

The example suggests the use of an intermediate value for l so that at least both sets of period 
and cohort values should increase for 0 > 1. The only valid conclusion in that case seemed to be 
that the rates were increasing. Allowing a set of period or cohort values to decrease would be 
misleading. Of course it is possible that increasing mortality is the net result of (say) decreasing 
period-indexed factors and increasing cohort-indexed factors. Very often it is the period and 
cohort values that are of primary interest. Thus it is useful to incorporate the solution Xa into the 
weighting procedure we suggest for selecting a particular l. To obtain a specific solution we weight 
the distances inversely by the mean residual sums of squares and minimize 

g(l) = dc(l) + dp(l) + da(l) 
Pc Pp Pa 

(17) 

This is one of the many measures that could be suggested. It has the advantage that it is a simple 
convex quadratic in l with a unique minimum. Differentiation of g(l) with respect to A produces a 
linear equation in the I+ J + K parameters, which must be satisfied at the minimum. This brings 
the set of normal equations with constraints to full rank for an immediate matrix inversion. The 
computational requirements for solution may also be met by a package such as GLIM which may 
be used to provide standard errors and goodness of fit tests. 

The minimization of g(l) should never provide values with an unhelpful over-emphasis on one 
particular variable. If the rates are increasing (or decreasing) across the whole table, this will be 
reflected in both period and cohort values. If small changes are introduced into the rate matrix 
these will be reflected in small changes in the parameter values. However the particular values must 
always be treated with some circumspection. Our confidence in them will vary according to how 
greatly the l-values that minimize dc(l), dp(l) and da(A) are spread. The whole problem is analogous 
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to that of deciding whether to measure the age distribution of a disease cross-sectionally or along 
cohorts. These two processes produce different results that have different gradient (i.e. 2) 
properties. The extent of this difference then corresponds to the difference in ls. Here we are taking 
a weighted mixture of the available approaches. 

In the results that we present in Section 7 we use the three two-variable submodels based upon 

c0 = lx (the null case) 

Po = lJ (the null case) (18) 
and 

a0 as defined in (7) 

This last choice is the simplest available, although derived from a period-based point of view. 

7. EXAMPLES 

Figures 3 and 4 contain the results of this procedure when applied to bladder cancer in men and 
lung cancer in women respectively. Both figures contain two graphs. On the left graph the age value 
is plotted against age on a doubly logarithmic scale. On the right hand graph calendar year is used 
for the x-axis, since this is the variable by which both birth cohort and period of death are 
measured. Thus two lines appear on this graph, one plotting cohort values, the other period values. 
The typical value of unity is represented by a horizontal dashed line. In neither of these examples 
does period of death contribute as much as cohort, although this is not always the case. For 
example, cancer of the oesophagus shows recent increases corresponding to period of death. 5 Here 
both sites have cohort values that rise to a distinct peak; bladder cancer in men in 1900/1, lung 
cancer in women in 1925/6. 

Parameter values obtained for each two variable model and the three variable model are 
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Figure 3. Mortality from bladder cancer in men in England and Wales during 1951-80, ages40-69, ICDcode 
188 (8th revision). Age, cohort and period of death values (see page 256) are plotted. 
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Figure 4. Mortality from lung cancer in women in England and Wales during 1951-80, ages 25-69, ICD 
codes 162 and 163 (8th revision). Age, cohort and period of death values (see page 257) are plotted. 

provided in Tables III and IV. Also included in these tables are adjusted SMRs and SCMRs for 
comparison, and mean residual sums of squares. The adjustments force the SMR and SCMR to 
satisfy ConP and Cone, and so have an 'average' value of unity. Several points arise. First, it should 
be noted that the age and period model and the age and cohort model can produce age values that 
are markedly different. These correspond to measuring cross-sectionally and along cohorts 
respectively, as discussed in Section 6. Secondly there is a strong similarity between the adjusted 
SMR and the period values from the age and period model. In both cases the greatest difference is 
0·01. Thus using adjusted SMR as p0 in the age and cohort model has some justification, for it 
almost corresponds to the first step in an iterative projection method which eventually converges to 
a solution of the full model. Using ~ from that age and cohort model as c0 in the age and period 
model we may further reduce f, and so on. Other choices of starting vectors and models are 
available to provide such an iterative technique. The minimiz.ation of g(l), as in Section 6, provides 
a more direct projection. Thirdly, there is not such a clear correspondence between the adjusted 
SCMR and the cohort values from the age and cohort model. Since there will not always be a 
cohort encompassing all age-groups it is usual practice to take average age-specific rates as 
standard. This approach is period-based and is inappropriate when a strong cohort factor exists, as 
in these cases. Thus a comparison of rates in the 1915/6 and 1935/6 cohorts for common age-groups 
for female lung cancer suggests similarity of value, consistent with the age and cohort model rather 
than the SCMR. The vector a0 defined in (7) is likewise period-based and inclined to cause 
underestimates of strong cohort effects in the period and cohort model. Fourthly, the full model 
solution may be seen to be weighted towards the best fitting submodel. For bladder cancer in men 
this is the period and cohort model; for lung cancer in women it is the age and cohort model. Fifthly 
it is interesting to note that the age values produce a very straight line on the doubly logarithmic 
plots of Figures 3 and 4. Linearity is not invariant under identification. This observation may be 
seen to add further weight to either the choice of identification or the power law for cancer rates. If 
one of these is accepted the other is given more justification. 
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Table III. Mortality from bladder cancer in men in England and Wales during 1951-80, ages 40--69, ICD code 
188 (8th revision): SMR; SCMR; age, period and cohort models. 

SMR SCMR A&P A&C P&C A.P&C 

40-44 13-1 15·3 14·5 
45-49 33·2 36·1 34·7 

Age at 50-54 71·6 72-8 71·0 
death 55-59 143·9 143·7 142·0 

60-64 267·7 264·4 264·5 
65-69 457·3 452·1 460·4 

1951-55 1·00 1·00 1·07 1·07 
Period 1956-60 1·00 0-99 1-()() 0-99 

of death 1961--65 1·02 1·01 0-99 0·98 
1966-70 1·06 1·06 1·02 1·01 
1971-75 0-99 0·99 0·98 0-99 
1976-80 0-94 0·94 0-96 0-96 

1885/6 0·89 0·89 0·82 0-82 
1890/1 0·97 0·98 0-94 0-95 
1895/6 1·00 1·00 0·99 0·99 
1900/1 1-10 1-10 1·09 1·09 
1905/6 1·02 1·03 1·02 1·02 

Cohort 1910/1 1·01 1·01 1·03 1·02 
1915/6 0-95 0·95 0·98 0-98 
1920/1 0·94 0·92 0-97 0-96 
1925/6 0-92 0-88 0.95 0·93 
1930/1 0·77 0·69 0·79 0-74 
1935/6 0·71 0·60 0-73 0·66 

Mean residual 
sum of squares 0-954 0-231 0-203 0-137 

Finally, we may compare the mean residual sums of squares. In neither case does the age and 
period model fit the data as well as the age and cohort model. This is reflected in the full model 
solutions which, although improving the mean residual sums of squares, do not have period of 
death values greatly different from unity. 

The overall suggestions are of hai.ards that have affected different generations to a different 
degree, and have been disappearing from the environment since their influence struck the maximal 
cohorts. The peak for bladder cancer in men probably corresponds to those who suffered the 
highest industrial exposures to aromatic amines which are known to be an important cause of this 
tumour. 38 However the whole curve, including the timing of the peak, resembles that for lung 
cancer in men. 6 Smoking is also known to be associated with bladder cancer so that this would add 
more force to the 1900/1 maximum, as this is also the maximal cohort for lung cancer in men. The 
decline in more recent cohorts could be due to both improved working conditions and safer 
smoking habits. 

That women started smoking later than men is reflected in the later position of the peak cohort 
for lung cancer, 1925/6 rather than 1900/1. Numbers of cigarettes smoked by successive 
generations of either sex have not declined to any great extent,39 raising the question as to what has 
caused lung cancer decreases. Reduction of tar content of cigarettes has been suggested,40 but not 
unanimously accepted.41 Alternatively reductions of air pollution may have been important.42 
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Table IV. Mortality from lung cancer in women in England and Wales during 1951-80, ages 25--69, ICD 
codes 162 and 163 (8th revision): SMR; SCMR; age, period and cohort models. 

SMR SCMR A&P A&C P&C A,P&C 

25--29 4·8 3-1 3·5 
30--34 14·5 8·0 8·9 
35--39 34·7 19·6 21·4 

Age at 40--44 74·4 44·5 47·5 
death 45--49 1503 99·6 104·3 

50--54 267·6 201-7 207·0 
55--59 396·3 359·0 36i·0 
60--64 551·0 613-4 604·5 
65--69 672·4 935·7 906·8 

1951-55 055 055 065 0.98 
1956-60 063 063 071 093 

Period 1961-65 080 080 084 097 
of death 1966-70 1·00 1·00 099 1·00 

1971-75 1·22 1-21 t-15 1·02 
1976-80 1·43 1·44 1·32 1·04 

1885/6 0-54 0-38 078 040 
1890/1 056 044 078 047 
1895/6 066 055 085 059 
1900/1 0-78 0-70 091 072 
1905/6 093 086 096 087 
1910/1 1-18 1-10 1·07 HO 

Cohort 1915/6 1·28 1·40 1-14 1·37 
1920/1 1·28 1·60 1-12 1·53 
1925/6 1·29 1-80 t-12 1·69 
1930/1 1·04 1·57 090 1·44 
1935/6 089 1·38 077 1·25 
1940/1 083 1·29 070 1-14 
1945/6 072 1·07 059 093 
1950/1 065 090 051 077 

Mean residual 
sum of squares 4·565 0284 1-792 0172 

This form of analysis has provided a ready, visual summary of the rate matrix in terms of the 
three variables, age, period and cohort. In this respect it is more informative than standardization 
analyses that concentrate upon one variable. Yet it does represent a summary of the set of rates. As 
a descriptive tool it enhances interpretation of the trends in disease mortality (or incidence) as has 
been seen from the two examples. Any interpretation must be made in the awareness of the 
problems caused by lack of identifiability. We have chosen an identification that is designed to 
produce solutions that are intermediate in that they apportion variation between projected two 
variable solutions. Small changes in the inestimable parameter A. result in what look like rotations, 
with age and cohort having the opposite direction of rotation to period. 

8. GOODNESS OF FIT 

It is possible to test the goodness offit of these models in the conventional way. Tests and standard 
errors ofthe individual parameters may be obtained from GLIM ifrequired. Hobcraft and Gilks37 



258 C. OSMOND AND M. J. GARDNER 

have shown that there is a nested sequence of models that permits various tests of the additivity 
assumption implicit in this formulation. This is done with respect to models that allow quadratic 
and cubic interaction terms in age and period. 

We mention one other procedure that is useful in assessing the variability of the extreme cohort 
values. New versions of the matrix, D, of numbers of deaths may be obtained by assuming that 
their elements are realizations of independent Poisson distributions with mean equal to the 
observed value. The resulting rate matrices are treated as before. Plotting envelopes of the values 
from several such realizations gives an indication of their variability. Generally the last cohort 
values are most variable because they are based upon small numbers of deaths. Cohort values near 
the centre are the least varying. 
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