
Notes on the analysis. 

The estimation process was performed using r statistical software. First, the intercept term pi(0) needs 

to be estimated as an unknown parameter together with theta. Second, plain nonlinear regression is not 

optimal (does not provide efficient estimates that deliver smallest possible standard errors and 

confidence intervals). What we did is a regression where squared differences between observed and 

predicted values were weighted by the inverse of the variance of prevalence estimates (squared 

standard errors) that come from Table 1.  We also performed the estimation separately for each period 

and data source. Estimated parameters are presented in the following table. 

Parameter Estimate StdError Statistic pValue period_data 
pi0 0.268948 0.002949 91.2005 8.67E-08 (1990,1995]_NHIS 

theta 0.023913 0.004649 5.144142 0.006772 (1990,1995]_NHIS 

pi0 0.286779 0.004326 66.29612 7.56E-06 (1997,2001]_NHIS 

theta 0.033742 0.001491 22.63122 0.000189 (1997,2001]_NHIS 

pi0 0.30062 0.018776 16.01098 8.90E-05 (2002,2007]_NHIS 

theta 0.032676 0.00395 8.27236 0.001165 (2002,2007]_NHIS 

pi0 0.442708 0.032178 13.75813 3.64E-05 (2008,2014]_NHIS 

theta 0.044571 0.003074 14.49734 2.82E-05 (2008,2014]_NHIS 

pi0 0.317812 0.016917 18.78608 4.73E-05 (2002,2007]_NSDUH 

theta 0.032366 0.002999 10.79362 0.000418 (2002,2007]_NSDUH 

pi0 0.43625 0.023675 18.42649 8.66E-06 (2008,2014]_NSDUH 

theta 0.04183 0.002049 20.41215 5.22E-06 (2008,2014]_NSDUH 

 

Table uses raw scale; multiply by 100 to get it in % scale.  

We originally intended to apply a non-linear meta-regression throughout to test for an increase in the 

cessation rate, but could not identify software that would allow us to do this for the custom model at 

hand. We could do it though if the model were linear. Having experimented with the linearization of the 

model we found that while the linearized model does fit well, its agreement with the original model is 

not good for some periods. To check that we obtained estimates of pi0 and theta for the linearized 

model and plugged them into the linearized model.  This model/method always fits well and similar to 

the nonlinear procedure that has both estimates and predictions done on the non-linear original model. 

Plugging estimates obtained using linearized model into the original model does not always fit well. The 

story is summarized in the following plots. 



 

This is an example where all methods fit well. 

 

This is an example where linearized estimates do not go well with the original model (upper line). 

In view of the above analysis we decided to go in two stages: 

1. Get correct and efficient estimates of theta and pi0 using inversely weighted nonlinear least 

squares regression for each period and data source combination separately (done above). 

2. Do a linear meta-regression across periods and data sources on estimates of theta as a response 

(with their predicted standard errors), and year since 1990 as continuous covariate, and data 

source as a categorical covariate. 

Meta-Regression. 



The estimates of cessation rates by time and data source obtained from the nonlinear weighted 

regression are given in the following figure. 

 

 

  



The results of meta regression are shown in the following table  

 

Parameter Estimate StdError Statistic pValue 95%ci.lb 95%ci.ub 
(Intercept) 0.026613 0.002216 12.01066 0 0.02227 0.030956 

t 0.005998 0.001373 4.367799 1.26E-05 0.003306 0.008689 

dataNSDUH -0.00388 0.002781 -1.39478 0.163082 -0.00933 0.001572 

 

Note that there is a highly significant trend in cessation rate (p=1.26E-05). The effect of data source is 

nonsignificant (p = 0.16). The model fits well as shown on the residual plot and the observed vs 

predicted plot. 

 


