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a b s t r a c t

We developed a comprehensive, flexible dynamic model that estimates all-cause mortality for
hypothetical cohort. All model input is user-specified. In the base case, members of the cohort may b
exposed to a high risk product as they age. The counterfactual scenario includes exposure to both a hig
risk and a lower risk product. The model sorts the population into age and exposure categories, an
applies the appropriate mortality rates to each category. The model tracks individual exposure histories
and estimates, at the end of each modeled age category, the number of survivors in the two exposur
scenarios (base case and counterfactual), and the difference between them. Markov Chain Monte Carl
techniques are used to estimate the variability of the results. Model output was compared against U
and Swedish life tables using population-specific tobacco exposure transition probabilities derived from
the literature, and it produced similar survival estimates.
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1. Introduction

Statistical models and simulation programs can be used t
provide estimates of the health effects expected to result from
changes in the distribution of a harmful exposure in a give
population. Such changes can occur due to natural trends or t
regulatory actions. If the projected changes are due to regulator
action, then modeled results allow direct assessment of the healt
impacts of alternative policies that might affect the distribution o
the exposure in different ways, thus supporting the selection o
one policy over another (Levy et al., 2006). Desirable features o
such models are the clarity with which the underlying assump
tions are stated, and the ability of the model to delineate th
relationship between the estimates it produces and the assump
tions underlying the model (Garrison 2003; Weinstein et al., 2003

In this paper, we introduce a new tool, the Dynamic Populatio
Model (DPM). The DPM builds on approaches described by other
(Hoogenveen et al., 2008; Kulik et al., 2012; Levy and Friend
2002; Tengs et al., 2004; Tengs et al., 2005; Tengs et al., 2001
but provides additional flexibility, with all parameters defined b
the model user. It improves on the validity of previous models b
accounting for age- and time-dependent changes in risks.

Starting with a hypothetical unexposed population and follow
ing the population as it ages, the DPM distributes subsets of th
cohort into user-defined exposure categories, and applies th
correct mortality rate to each category. In the base case, th
population has access to only one type of product. In the counter
factual exposure scenario, proportions of the population may us
an alternative product with a different risk profile. In this manner
the DPM estimates all-cause mortality in the hypothetical popula
tion under different exposure distributions, and compares th
numbers of survivors expected under each exposure scenario
The example presented here, and the one upon which the mode
was built, uses cigarettes and a modified risk tobacco produc
(MRTP, e.g., smokeless tobacco) associated with lower health risk
than cigarettes. It compares the number of survivors in a base cas
that includes never, current and former cigarette smokers, but no
MRTP users, with the number of survivors in a counterfactual sce
nario that additionally includes never, current and former MRTP
users.
e
.
,

e

2. Methods

2.1. The model

The DPM user defines the size of a hypothetical population
The DPM models a cohort, in which all members of this hypothet
ical population are the same age and none are exposed at th
beginning of the simulation. The time variable is age (categorical)
The DPM user specifies at which age to begin and end follow-up
and the age category width. All age categories must have th
same width.
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2.2. Transitions between exposure states

The DPM distributes persons into age and exposure categorie
using age category-specific exposure transition probabilitie
entered by the DPM user. All cohort members begin as unexpose
(to either product), shown in the top left-hand box of Fig. 1. As fo
low-up of the base case progresses (Fig. 1, top row), individual
either remain as unexposed (curved arrow) or transition to curren
use of the base case product (top row, second box), shown by th
forward arrow. Current users may remain current users (curved ar
row) or become former users in the next follow-up interval. Subse
quently, former users may restart the base case product and qu
again. Rows below the top in Fig. 1 are needed to describe the add
tional possibility of exposure to the alternative product in th
counterfactual scenario. For example, unexposed cohort member
(top left-hand box) may remain as unexposed (curved arrow) o
transition to use of the alternative product (downward arrow
Current alternative product users may remain current user
(curved arrow), switch to the base case product, become concur
rent dual users of both products, or quit use of the alternativ
product in the next follow-up interval. Subsequently, persons ca
remain in their exposure category (curved arrow) or move int
other exposure categories (forward arrow).

The DPM user can define the probability of transitioning from
one exposure state to another from available data, or the transitio
probabilities can be specified to define a particular question o
interest. For the example of smoking and MRTP use, assume tha
the smoking initiation rate among US males aged 13–17 years i
a particular year of interest is 11%; then, the probability o
No use of either product

Base case 
product 

Base case
product

Former base 
case product

BothAlternative product 

Dual use

Former alternative 
product 

Alternative 
product 

Former alternative 
product

Former use, both 
products**

Alternative 
product 

Former alternative 
product 

Former u
pro

Fig. 1. Schematic representation of the distribution of persons into exposure catego
counterfactual exposure scenarios (all rows).⁄
transitioning from never tobacco user to smoker in age categor
13–17 would be set by the DPM user to 11%. If the DPM use
was interested in the effect on population mortality if, among U
males aged 13–17, smoking initiation was 5% instead, the DPM
user would set the probability of transitioning from never tobacc
user to smoker in age category 13–17 to 5%.

The distribution of the cohort into exposure groups is simpl
enough to be applied in a spreadsheet. However, to obtain variabil
ity estimates of the output using Markov chain Monte Carlo tech
niques, we implemented the DPM in the WinBUGS compute
program (version 1.4.3) (Lunn et al., 2000). Transition probabilitie
can be modeled as fixed (most appropriate for rates defining a spe
cific question of interest) or normally distributed (most appropri
ate for rates based on estimates from the literature), but ar
bounded between 0% and 100%. Default means are equal to th
respective estimated transition probabilities, and default standar
deviation is equal to 1%. The standard deviation can be changed b
the DPM user.

2.3. Mortality

A Poisson model embedded within the DPM estimates the num
ber of deaths among persons with a particular exposure histor
involving only the base case product. The estimates are based o
person-years and deaths by age, years of exposure and years sinc
cessation of exposure entered by the user. Only survivors move o
to the next age category. Specifically, r:ne, the mortality rat
among persons who never used the base case (or the alternative
product and r:bc and r:fbc, the mortality rate among current an
Base case 
product

 Former base 
case product

 products Alternative product

Base case 
product 

Former alternative 
product 

Former base case 
product

Former base 
case product

se of both 
ducts 

*Base case: Only top row transi�ons (marked by bold le�ers and arrows) 
are possible. Counterfactual scenario: All rows and transi�ons are 
possible. 
** Dual users may either remain as such, or quit both products. They 
may not become single product users.

ries by the Dynamic Population Model. Transitions for base case (top row, only) and
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aIncluding estimated variability 

Person-years and 
deaths by age, years 

current and years 
former exposure

a

DYNAMIC 
POPULATION 

MODEL

Excess rela�ve 

risk
a

Number and 
width of age 
categories 

Age-specific 
transi�on 
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a
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a
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a 

Counterfactual 
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a

Fig. 2. Model input and output.
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former users of the base case product, respectively, are estimate
as

r:ne ¼ e
boþbageþb

agezagez

r:bc ¼ r:ne� e
boþbageageþb

agezagez

r:fbc ¼ r:bc � e
b

yfbcyfbcþb
ayfbcage �yfbc

where bc = base case product use, fbc = former base cas
product use, ybc = years of exposure to the base case product an
yfbc = years since quitting the base case product.

To estimate mortality rates for the alternative product (ap), th
DPM user enters the excess relative risk (ERR) for individuals wit
current exposure to the alternative versus the base case produc
defined as the ratio of relative risks (RR) for the alternative an
base case exposures:

ERR ¼ RR:ap� 1
RR:bc � 1

The DPM then calculates age- and duration-specific mortality rate
for the alternative product compared with the base case product, a
follows: Because RR:ap� 1 ¼ ERRðRR:bc � 1Þ and, therefore
r:ap
r:ne� r:ne

r:ne ¼ ERRðr:bc
r:ne� r:ne

r:neÞ and r:ap� r:ne ¼ ERRðr:bc � r:neÞ,th
mortality rate for current users of the alternative product is

r:ap ¼ ERR � r:bc þ ð1� ERRÞr:ne:

Mortality rates for former users of the alternative product are calcu
lated similarly, replacing bc with fbc and ap with fap.

For users of the base case product who switch to the alternativ
product, mortality rates are the product of four factors, represent
ing risks from background, base case product use for the age rang
during which the base case product was used, alternative produc
use for the age range during which the alternative product wa
used, and former use of the base case product. Mortality rates fo
users of the alternative product who switch to the base case prod
uct are calculated similarly, but exclude risk for former use of th
alternative product because the alternative product is assumed t
have lower risks than the base case product. Mortality rates fo
persons switching to a different product and then quitting ar
calculated similarly, with former use replacing current use of th
second product. Concurrent dual use is assumed to have the sam
mortality risk as use of the higher risk product. A detailed deriva
tion of the mortality rates is shown in Appendix A.

The default prior distributions for the coefficients of the cor
Poisson model are non-informative normal distributions, wit
mean 0 and standard deviation 100. The log-transformed ERR
are assumed to be normally distributed, with mean equal to th
log-transformed ERR and standard deviation 100. Default standar
deviations can be changed by the DPM user.

2.4. Model output and applications

The DPM output includes the age-specific number of survivor
under the base case and counterfactual scenario, and their differ
ence. Output values are estimated after each iteration and summa
rized over all iterations using means and 95% posterior interval
(i.e., the 2.5th and 97.5th percentile of the distribution). The mode
input and output are summarized in Fig. 2.

The default output from the DPM is a comparison between sur
vivors in the base case and counterfactual exposure scenarios. A
possible exposure transitions can occur after conclusion of the fift
category of attained age, so age-specific numbers of survivors ar
displayed from that point forward. These results can be used t
generate life tables with age category-specific remaining lif
expectancy and, if data are available, quality-of-life adjusted ag
category-specific remaining life expectancy. Results can also b
used to estimate tipping points, defined as the proportion of th
population that must experience a reduction in harm to overcom
the survival deficit arising from a proportion of the population
experiencing an increase in harm, or vice versa. Tipping poin
analyses can be relatively simple, addressing only one harmful o
beneficial exposure pattern and one exposure pattern expected
to counteract the harm or benefit it produces. They can also b
complex, addressing multiple interacting exposure patterns. Mode
input values can be systematically changed to allow for sensitivit
analyses.
3. Validation of the model using cigarette and MRTP exposure
data

The Kaiser Permanente (KP) cohort study provided age-, year
of smoking- and years since quitting-specific mortality rates fo
men (Friedman et al., 1997), and, after some adjustments (Appen
dix B), these were used in the embedded Poisson model. There wa
no evidence of over- or under-dispersion, and including interaction
terms for (age � duration of smoking) and (age � duration of quit
ting) provided a model with excellent fit, graphically and statisti
cally (Pearson Chi-Square goodness of fit test p-value = 0.82), i.e
the mortality rates predicted by the model very closely matched
the observed mortality rates. Fit was still good graphically and sta
tistically (Pearson Chi-Square goodness of fit test p-value = 0.2
when we used the KP data for women. While the KP data wer
used to develop the structure of the Poisson model, mortality dat
by age, years of exposure (in this example, to smoking) and year
since exposure cessation (i.e., quitting smoking) from any popula
tion can be used.

We compared modeled mortality estimates against mortalit
estimates using actual population life tables. To validate mortalit
estimates under the base case (no MRTP use), we predicted mortal
ity in 2006 using age-specific 1980 US male smoking initiation
(SAMHSA 1999) and cessation rates (Messer et al., 2007) to allow
for adequate induction time (Table 1). The prevalence of smokeles
tobacco use in US men has been fairly low and stable, around 5%
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Table 1
Five-year cigarette smoking initiation and cessation rates per 100 person-years in
1980, US.

Age category Smoking initiation rate1 Smoking cessation rate2

13–17 11.25 2.5
18–22 10.00 4.5
23–27 1.25 4.5
28–32 0.25 4.5
33–37 0.00 5.0
38–42 0.00 5.5
43–47 0.00 5.5
48–52 0.00 7.5
53–57 0.00 8.5
58–62 0.00 8.5
63–67 0.00 8.5
68–72 0.00 8.5

1 Based on: Office of Applied Studies, National Household Survey on Drug Abuse
(NHSDA), 1999, Appendix D, table 4.2 (http://www.samhsa.gov/data/NHSDA/
tobacco/appendixd.htm).

2 Based on: Messer et al. (2007).

Table 3
Age-specific estimated survivors: 2006 Swedish life table versus model-based
estimates (starting with 1,000,000 12 year old male never tobacco users).a

Age
category

Survivors based on Swedish
life table

Survivors based on exposure
scenario (Sweden)

38–42 980,999 979,274
43–47 972,889 970,010
48–52 959,782 957,276
53–57 936,838 935,677
58–62 902,590 902,104
63–67 846,884 847,362
68–72 764,275 762,582

a Age group 38–42 is first age group where all possible transitions have occurred.
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(CDC 1994), and thus approximates a population without MRT
exposure. We compared the model results with the 2006 US life ta
ble for men (CDC 2009).

To validate the counterfactual scenario estimates, we used snu
as an example MRTP. Snus use has been common among Swedis
men, especially since the 1970s, and some ERR estimates wer
available that allowed estimation of all-cause mortality risk fo
users of snus compared to cigarette smokers. For current snu
use versus current smoking, we used a conservative estimate o
ERR = 0.11 (Levy et al., 2004). We assumed the same ERR for forme
snus users versus former smokers and that users of both product
(dual users) had the same excess risk as smokers. We were able t
define a counterfactual exposure scenario based on probabilities o
transitioning between cigarettes, snus and dual use (Lundqvis
et al., 2009) that, if the DPM worked correctly, should lead to a
approximation of the 2006 Swedish life table for men (Sverige
officiella statistik 2012) (Appendix C). For validation of both th
base case and the counterfactual exposure scenario, we use
10,000 iterations, after a burn-in of 2000 iterations, and considere
a Markov chain to have converged if the Monte Carlo error was les
than 5% of the sample standard deviation. Development of the DPM
was not based on any specific input data. The input values spec
fied above were only used to validate the predictions generate
by the DPM.

Table 2 shows close correspondence between the US lif
table-based numbers of survivors and the model results for th
base case. The number of survivors estimated by the DPM’s bas
case was within 0.2% of the US life table-based number o
survivors. Table 3 shows close correspondence between the mode
results and the Swedish life table-based numbers of survivors fo
Table 2
Age-specific estimated survivors: 2006 US life table versus model-based estimates
(starting with 1,000,000 12 year old male never tobacco users)a.

Age
category

Survivors based on US life
table

Survivors based on base case
(US)

38–42 957,654 957,100
43–47 940,866 939,200
48–52 915,745 914,300
53–57 880,470 879,800
58–62 832,268 832,000
63–67 764,922 765,600
68–72 674,217 674,300

a Age group 38–42 is the first age group where all possible transitions have
occurred.
the counterfactual exposure scenario. The number of survivor
estimated by the DPM was within 0.3% of the Swedish life table
based number of survivors.
a
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4. Discussion

The DPM was designed to estimate the change in survival ex
pected when an alternative exposure is added to a population. I
is structured to test the effect on mortality if some people substi
tute a new exposure for an existing exposure, or if some peopl
who would not have been exposed at all in the base case are in
stead exposed to the new product in the counterfactual scenario
The DPM was specifically developed to estimate changes in sur
vival, at the population level, when proportions of potential or ac
tual cigarette smokers substitute use of a MRTP for all or some o
their cigarettes, but it is not limited to this application.

Partial or complete substitution of a higher risk with a lowe
risk product should provide some health benefit. Evidence for th
existence of such health benefits for cigarette smokers who switc
to MRTP is provided by correlations between changing patterns o
tobacco use and changing morbidity and mortality patterns ob
served in Sweden, where snus, a type of MRTP, has been commonl
used by men for decades. Nevertheless, policy makers mus
consider potential unintended adverse consequences of policie
promoting new MRTPs, including the possibility that curren
smokers who would have otherwise given up cigarettes instea
substitute MRTPs for some or all of their cigarettes, and tha
non-tobacco users might initiate MRTP use and then become ciga
rette smokers instead of remaining as never tobacco users. Th
DPM supports the choice among alternative policies by allowin
for comparison of the health consequences of various potentia
changes in the distribution of use of different products.

The model validation exercises showed that, given a sufficien
induction period and reasonable input data, the DPM accuratel
predicts life tables in a population with no MRTP use (US) and
population with widespread MRTP use (Sweden). Depending o
available data, other countries, time periods and types of exposur
could have been used to validate the model. The results of the val
idation indicate that the DPM can provide meaningful data to com
pare the health effects of different hypothetical exposur
distributions. If those distributions arise from alternative policies
then the DPM can be used to compare health consequences du
to policy decisions.

The DPM has several limitations. Like all models, it is built o
simplifying assumptions, specifically: (1) It allows testing the addi
tion of a new exposure, but not removal of an exposure that exist
in the base case. (2) The effects of using only two types of product
are compared. (3) The DPM assumes that the rates of risk reductio
associated with stopping use of the base case and the alternativ
products are proportional; this may not be true. (4) Mortality rate
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depend on the overall duration of product use or quitting, but no
on the amount of each product used nor the sequence of exposures
(5) Because the amount of exposure is not accounted for, the ERR
for current and former dual use vs. cigarette smoking are not mod
ifiable by the user, and are set to one. (6) Although the DPM accom
modates a large number of exposure patterns, it does not allow fo
concurrent dual exposure to revert to exposure to either singl
product, alone. (7) Only the direct effects of exposure to highe
and lower risk products are considered. In the tobacco example
discussed here, the DPM does not account for changes to second
hand smoke exposures due to changes in the proportions of ciga
rette smokers in the population. (8) Finally, the DPM require
user-specified input data. The precision and validity of the out
come estimates depend on the certainty and validity of the mode
input selected.

The DPM estimates all-cause mortality as numbers of survivors
While the results also can be expressed as numbers of deaths
losses or gains in life expectancy, person-years, or disability-ad
justed life-years due to the more widespread use of the alternativ
product, uncertainty estimates (i.e., posterior intervals) are not ye
available for these alternative metrics. We have not attempted t
use or to validate the DPM to model the effect of changing expo
sures other than to cigarettes and MRTP. Model input values ca
be systematically changed to allow for sensitivity analyses, and re
sults can also be used to estimate tipping points.

Setting up the model to run properly in WinBUGS requires tech
nical skills. Enhancements to the DPM currently under way includ
development of a user-friendly interface via a web portal; incorpo
ration of morbidity (i.e., incident disease) as an outcome measure
and allowing user-specified ERRs for current and former dual expo
sure. A version of the model predicts cause-specific mortality, bu
the results have not yet been fully validated.

The main strengths of the model are its flexibility, its ability t
account for uncertainty in the model input and output, its compre
hensiveness, and its demonstrated validity. Specifically, all mode
input can be changed by the user, and the level of uncertainty i
model input can be specified and is accounted for by the posterio
intervals that estimate the variability of the results. There are n
restrictions on age, time of initiation or time of cessation of expo
sure. The model estimates the number of survivors at the end o
each age category, for each exposure history up to that point. Com
monly observed exposure histories are accommodated but the use
can restrict the model to a subset of transitions if not all exposur
histories are of interest.

While other dynamic models focusing on risks associated wit
use of tobacco products have been described in the literature, mos
were developed to estimate changes in population-level risk due t
changes in proportions of never, current and former smoker
resulting from increasing smoking cessation rates and/or decreas
ing smoking initiation rates; they do not consider the effect o
introducing a new product to a population (Kulik et al., 2012) (Lev
and Friend, 2002) (Tengs et al., 2004; Tengs et al., 2005; Teng
et al., 2001) (Hoogenveen et al., 2008) (Kulik et al., 2012). Onl
two published models were designed to estimate the effects o
introducing a MRTP to a population of never, current and forme
smokers, but the range of questions they can address is limited be
cause they hold smoking initiation and cessation rates constan
and do not allow transition probabilities to depend on ag
(Apelberg et al., 2010; Mejia et al., 2010). Specifically, the mode
proposed by Apelberg, Onicescu, et al. allows for very few transi
tions, assumes that transition probabilities do not depend on ag
and that mortality risk depends only on current tobacco exposur
status and no other exposure metric. The Mejia, Ling et al. mode
also assumes that risk depends only on current tobacco exposur
status (with no other exposure metric) and uses a limited numbe
of exposure states and transitions (e.g., quitters of tobacco canno
revert to tobacco use); the model uses the same initiation, cessa
tion and transition rates for the entire hypothetical population
regardless of age; and, quantifies the risk of tobacco related health
by a health index that is assumed to be the same regardless o
duration of tobacco use or cessation. The health index itself doe
not seem to be based on empirical data.

Although the DPM was developed with tobacco exposures in
mind, it is not limited to this application. The key benefit of usin
models like the DPM to investigate the potential effects of publi
health policies that aim to shift populations from more harmfu
to less harmful exposures is their ability to hold constant al
assumptions and factors other than the distribution of exposur
or the comparative risk estimates. Because the model require
the user to specify the particular transition probabilities of interes
and the risk associated with the new compared with the old expo
sure, the basis for evaluating policies is clarified. For example, th
US Food and Drug Administration (FDA) has recently issued regu
lations for the identification of certain products as MRTP. Grantin
an MRTP designation might increase population-level harm if i
encourages tobacco use (e.g., MRTP use instead of quitting or no
starting to smoke). An MRTP designation might decrease popula
tion-level harm if it causes an adequate number of people to re
place some or all of the cigarettes they currently smoke (a high
risk exposure) with the MRTP (a lower risk exposure), or if mor
people quit using tobacco. The DPM can be used to test hypothese
such as these, and to evaluate the magnitude of the population
shifts necessary to meaningfully increase or decrease harm.
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